首页> 外文期刊>Annales Mathematiques Blaise Pascal >Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant
【24h】

Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant

机译:最优Hardy–Littlewood不等式由一个普遍常数统一界定

获取原文

摘要

The m -linear version of the Hardy–Littlewood inequality for m -linear forms on ? p spaces and m p 2 m , recently proved by Dimant and Sevilla-Peris, asserts that ∑ j i = 1 1 ≤ i ≤ m ∞ T e j 1 , ? , e j m p p - m p - m p ≤ 2 m - 1 2 sup x i ≤ 1 1 ≤ i ≤ m T ( x 1 , ? , x m ) for all continuous m -linear forms T : ? p × ? × ? p → ? or ? . We prove a technical lemma, of independent interest, that pushes further some techniques that go back to the seminal ideas of Hardy and Littlewood. As a consequence, we show that the inequality above is still valid with 2 ( m - 1 ) / 2 replaced by 2 ( m - 1 ) ( p - m ) / p . In particular, we conclude that for m p ≤ m + 1 the optimal constants of the above inequality are uniformly bounded by 2 ; also, when m = 2 , we improve the estimates of the original inequality of Hardy and Littlewood.
机译:关于?上的m线性形式的Hardy–Littlewood不等式的m线性形式。由Dimant和Sevilla-Peris最近证明的p个空间和m <2 m断言,∑ j i = 1 1≤i≤m∞T e j 1,? ,e j m p p-m p-m p≤2 m-1 2 sup x i≤1 1≤i≤m T(x 1,?,x m)对于所有连续的m线性形式T:? p×? ×? p→?要么 ? 。我们证明了具有独立利益的技术引理,进一步推动了一些技术,这些技术可以追溯到哈代和利特伍德的开创性思想。结果,我们证明上面的不等式在2(m-1)/ 2替换为2(m-1)(p-m)/ p的情况下仍然有效。特别是,我们得出结论,对于m ≤m +1,上述不等式的最优常数由2均匀界定。同样,当m = 2时,我们改善了Hardy和Littlewood的原始不等式的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号