首页> 外文期刊>Abstract and applied analysis >Mathematical Analysis of HIV Models with Switching Nonlinear Incidence Functions and Pulse Control
【24h】

Mathematical Analysis of HIV Models with Switching Nonlinear Incidence Functions and Pulse Control

机译:具有切换非线性关联函数和脉冲控制的HIV模型的数学分析。

获取原文

摘要

This paper aims to study the dynamics of new HIV (the human immunodeficiency virus) models with switching nonlinear incidence functions and pulse control. Nonlinear incidence functions are first assumed to be time-varying functions and switching functional forms in time, which have more realistic significance to model infectious disease models. New threshold conditions with the periodic switching term are obtained to guarantee eradication of the disease, by using the novel type of common Lyapunov function. Furthermore, pulse vaccination is applied to the above model, and new sufficient conditions for the eradication of the disease are presented in terms of the pulse effect and the switching effect. Finally, several numerical examples are given to show the effectiveness of the proposed results, and future directions are put forward.
机译:本文旨在研究具有切换非线性入射函数和脉冲控制的新型HIV(人类免疫缺陷病毒)模型的动力学。首先假定非线性入射函数是随时间变化的函数并随时间转换函数形式,这对于建模传染病模型具有更现实的意义。通过使用新型的常见Lyapunov函数类型,可以获得具有周期性切换项的新阈值条件,以确保根除疾病。此外,将脉冲疫苗接种应用于上述模型,并且就脉冲效应和切换效应提出了用于根除疾病的新的充分条件。最后,通过算例验证了所提结果的有效性,并提出了今后的发展方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号