Let $ X_1 , X_2 , cdots , X_n$ be $n$ independent and identically distributed random variables with continuous cumulative distribution function $ F(x).$ Let us rearrange the $X's$ in the increasing order $ X_{1:n} le X_{2:n} le cdots le X_{n:n}$. We call $X_{k:n} $ the k-th order statistic. Then $X_{n:n} -X_{n-1:n}$ and $X_{n-1:n}$ are independent if and only if $F(x)=1- e^{-rac{x}{c}} $ with some $ c>0 $. And $ X_j $ is an upper record value of this sequence if $ X_j > max{ X_1 , X_2 , cdots , X_{j-1} }.$ We define $ u(n) =min {j ert j > u(n-1) , X_j > X_{u(n-1)} , n geq 2 } $ with $ u(1) =1.$ Then $ F(x)=1-e^{-rac{x}{c}}{hskip-0.05cm}, , x>0 $ if and only if $ E[X_{u(n+3)} - X_{u(n)} ert X_{u(m)} =y ] = 3c ,$ or $ E[X_{u(n+4)} - X_{u(n)} ert X_{u(m)} =y ] = 4c , , ,, n geq m+1 .$
展开▼
机译:假设$ X_1,X_2, cdots,X_n $为$ n $独立且具有连续累积分布函数$ F(x)的相同分布的随机变量。$让我们以$ X_ {1:n递增的顺序重新排列$ X's $ } le X_ {2:n} le cdots le X_ {n:n} $。我们将$ X_ {k:n} $称为第k阶统计量。那么$ X_ {n:n} -X_ {n-1:n} $和$ X_ {n-1:n} $是独立的,当且仅当$ F(x)= 1- e ^ {- frac { x} {c}} $,其中有些$ c> 0 $。如果$ X_j> max {X_1,X_2, cdots,X_ {j-1} },则$ X_j $是该序列的最高记录值。我们定义$ u(n)= min {j vert j> u(n-1),X_j> X_ {u(n-1)},n geq 2 } $与$ u(1)= 1. $然后$ F(x)= 1-e ^ {- frac {x} {c}} { hskip-0.05cm},,x> 0 $当且仅当$ E [X_ {u(n + 3)}-X_ {u(n)} vert X_ {u(m)} = y] = 3c,$或$ E [X_ {u(n + 4)}-X_ {u(n)} vert X_ {u(m)} = y] = 4c ,,,,n geq m + 1。$
展开▼