首页> 外文期刊>BMC Bioinformatics >Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks
【24h】

Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks

机译:大规模生物分子网络的子网挖掘和状态空间建模与验证

获取原文

摘要

Background Biomolecular networks dynamically respond to stimuli and implement cellular function. Understanding these dynamic changes is the key challenge for cell biologists. As biomolecular networks grow in size and complexity, the model of a biomolecular network must become more rigorous to keep track of all the components and their interactions. In general this presents the need for computer simulation to manipulate and understand the biomolecular network model. Results In this paper, we present a novel method to model the regulatory system which executes a cellular function and can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to the large-scale biomolecular network to obtain various sub-networks. Second, a state-space model is generated for the sub-networks and simulated to predict their behavior in the cellular context. The modeling results represent hypotheses that are tested against high-throughput data sets (microarrays and/or genetic screens) for both the natural system and perturbations. Notably, the dynamic modeling component of this method depends on the automated network structure generation of the first component and the sub-network clustering, which are both essential to make the solution tractable. Conclusion Experimental results on time series gene expression data for the human cell cycle indicate our approach is promising for sub-network mining and simulation from large-scale biomolecular network.
机译:背景技术生物分子网络动态响应刺激并实现细胞功能。了解这些动态变化是细胞生物学家面临的主要挑战。随着生物分子网络的规模和复杂性的增长,生物分子网络的模型必须变得更加严格,以跟踪所有组件及其相互作用。通常,这提出了对计算机仿真进行操作和理解生物分子网络模型的需求。结果在本文中,我们提出了一种新的方法来对执行细胞功能并可以表示为生物分子网络的调节系统进行建模。我们的方法包括两个步骤。首先,将一种新颖的无标度网络聚类方法应用于大规模生物分子网络以获得各种子网络。其次,为子网生成状态空间模型,并对其进行仿真以预测其在蜂窝环境中的行为。建模结果表示针对自然系统和扰动均针对高通量数据集(微阵列和/或遗传筛选)进行测试的假设。值得注意的是,此方法的动态建模组件取决于第一组件的自动网络结构生成和子网聚类,这对于使解决方案易于处理都是必不可少的。结论关于人类细胞周期的时间序列基因表达数据的实验结果表明,我们的方法有望用于大规模生物分子网络的子网挖掘和仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号