...
首页> 外文期刊>BMC Systems Biology >Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways
【24h】

Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways

机译:诺氏疟原虫中磷脂合成的动力学模型揭示了关键步骤和多种途径的相对重要性

获取原文
           

摘要

Background Plasmodium is the causal parasite of malaria, infectious disease responsible for the death of up to one million people each year. Glycerophospholipid and consequently membrane biosynthesis are essential for the survival of the parasite and are targeted by a new class of antimalarial drugs developed in our lab. In order to understand the highly redundant phospholipid synthethic pathways and eventual mechanism of resistance to various drugs, an organism specific kinetic model of these metabolic pathways need to be developed in Plasmodium species. Results Fluxomic data were used to build a quantitative kinetic model of glycerophospholipid pathways in Plasmodium knowlesi. In vitro incorporation dynamics of phospholipids unravels multiple synthetic pathways. A detailed metabolic network with values of the kinetic parameters (maximum rates and Michaelis constants) has been built. In order to obtain a global search in the parameter space, we have designed a hybrid, discrete and continuous, optimization method. Discrete parameters were used to sample the cone of admissible fluxes, whereas the continuous Michaelis and maximum rates constants were obtained by local minimization of an objective function.The model was used to predict the distribution of fluxes within the network of various metabolic precursors. The quantitative analysis was used to understand eventual links between different pathways. The major source of phosphatidylcholine (PC) is the CDP-choline Kennedy pathway. In silico knock-out experiments showed comparable importance of phosphoethanolamine-N-methyltransferase (PMT) and phosphatidylethanolamine-N-methyltransferase (PEMT) for PC synthesis. The flux values indicate that, major part of serine derived phosphatidylethanolamine (PE) is formed via serine decarboxylation, whereas major part of phosphatidylserine (PS) is formed by base-exchange reactions. Sensitivity analysis of CDP-choline pathway shows that the carrier-mediated choline entry into the parasite and the phosphocholine cytidylyltransferase reaction have the largest sensitivity coefficients in this pathway, but does not distinguish a reaction as an unique rate-limiting step. Conclusion We provide a fully parametrized kinetic model for the multiple phospholipid synthetic pathways in P. knowlesi. This model has been used to clarify the relative importance of the various reactions in these metabolic pathways. Future work extensions of this modelling strategy will serve to elucidate the regulatory mechanisms governing the development of Plasmodium during its blood stages, as well as the mechanisms of action of drugs on membrane biosynthetic pathways and eventual mechanisms of resistance.
机译:背景疟原虫是疟疾的致病性寄生虫,这种传染病每年导致多达100万人死亡。甘油磷脂和因此的膜生物合成对于寄生虫的生存是必不可少的,并且是我们实验室开发的新型抗疟疾药物的目标。为了了解高度冗余的磷脂合成途径和对各种药物的耐药性最终机制,需要在疟原虫物种中开发这些代谢途径的生物特异性动力学模型。结果采用通量数据建立了疟原虫中甘油磷脂途径的定量动力学模型。磷脂的体外掺入动力学揭示了多种合成途径。已经建立了具有动力学参数值(最大速率和米氏常数)的详细代谢网络。为了在参数空间中进行全局搜索,我们设计了一种混合,离散和连续的优化方法。使用离散参数对可允许通量的锥度进行采样,而通过目标函数的局部最小化获得连续的Michaelis和最大速率常数,该模型用于预测各种代谢前体网络中通量的分布。定量分析用于了解不同途径之间的最终联系。磷脂酰胆碱(PC)的主要来源是CDP-胆碱肯尼迪途径。在计算机上的敲除实验表明,磷酸乙醇胺-N-甲基转移酶(PMT)和磷脂酰乙醇胺-N-甲基转移酶(PEMT)在PC合成中具有相当的重要性。通量值表明,丝氨酸衍生的磷脂酰乙醇胺(PE)的大部分是通过丝氨酸脱羧形成的,而磷脂酰丝氨酸(PS)的大部分是通过碱基交换反应形成的。 CDP-胆碱途径的敏感性分析表明,载体介导的胆碱进入寄生虫和磷酸胆碱胞苷转移酶反应在该途径中具有最大的敏感性系数,但没有将反应区分为唯一的限速步骤。结论我们为诺氏假单胞菌的多个磷脂合成途径提供了完全参数化的动力学模型。该模型已用于阐明这些代谢途径中各种反应的相对重要性。此建模策略的未来工作扩展将用于阐明控制疟原虫血液阶段发育的调控机制,以及药物对膜生物合成途径的作用机制和最终的耐药机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号