首页> 外文期刊>Decision support systems >Real-time temperature prediction in a cold supply chain based on Newton's law of cooling
【24h】

Real-time temperature prediction in a cold supply chain based on Newton's law of cooling

机译:基于牛顿冷却定律的冷供应链中实时温度预测

获取原文
获取原文并翻译 | 示例

摘要

Many goods, including pharmaceuticals, require close temperature monitoring. This is important not only for complying with regulations but also for guaranteeing safety of use. A particular challenge in controlling a product's temperature arises during transportation. In cold supply chains (SCs), temperature is maintained by refrigerated containers. However, many situations, e.g. cooling system failure, lead to ambient temperature changes, and this needs to be detected as early as possible to prevent product damage. Existing approaches to temperature prediction are confined to long-term forecasts with relatively stable ambient temperatures and/or rely on multiple sensors in the known fixed positions. Since interventions in a SC are required immediately, there is a need for methods that provide real-time predictions regarding regular ambient temperature instability, i.e. when the ambient temperature changes unexpectedly in the short term. We propose a novel method that extends the applicability of Newton's law of cooling (NLC) to changeable ambient temperatures based on a set of temperature stability conditions and a sensor measurement error. In the method, an optimal number of measurements that characterize stable ambient temperatures and improve prediction reliability are selected. We compare the adapted NLC with artificial neural networks and autoregressive moving average models with respect to deviation prediction, prediction error, and execution time. Our evaluation based on real-world data shows that the adapted NLC outperforms existing baseline methods. In contrast to existing solutions, our method does not require any knowledge about the positioning of products within the container, further increasing its practical value.
机译:许多商品,包括药品,需要紧温监测。这不仅仅是为了遵守法规,而且是为了保证使用安全性。在运输过程中,控制产品温度的特殊挑战。在冷供应链(SCS)中,温度由冷藏容器保持。但是,很多情况,例如,冷却系统发生故障,导致环境温度变化,需要尽早检测到可防止产品损坏。将现有的温度预测方法限制在具有相对稳定的环境温度和/或依赖于已知的固定位置中的多个传感器的长期预测。由于立即需要SC中的干预,因此需要提供关于常规环境温度不稳定性的实时预测的方法,即,当环境温度在短期内意外变化时。我们提出了一种新的方法,将牛顿冷却(NLC)的适用性扩展到基于一组温度稳定条件和传感器测量误差的可变环境温度。在该方法中,选择了表征稳定的环境温度并提高预测可靠性的最佳测量数。我们将适应的NLC与人工神经网络和自回归移动平均模型进行比较,相对于偏差预测,预测误差和执行时间。我们基于真实数据的评估显示,适应的NLC优于现有的基线方法。与现有解决方案相比,我们的方法不需要对容器内产品定位的任何知识,进一步提高其实际价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号