首页> 外文期刊>Decision support systems >Scholar-friend recommendation in online academic communities: An approach based on heterogeneous network
【24h】

Scholar-friend recommendation in online academic communities: An approach based on heterogeneous network

机译:在线学术社区中的学者推荐:基于异构网络的方法

获取原文
获取原文并翻译 | 示例

摘要

As a particular type of social networking site, online academic communities have revolutionized the way researchers collaborate and communicate with each other. Accompanying the growth in the number of users registered on online academic communities, the information overload problem presents a great challenge for researchers trying to find relevant and reliable friends there. Different from friends in conventional social networking sites, friends in online academic communities are denoted as scholar-friends in this research. Scholar friend recommendation in online academic communities involves different entities (e.g., researchers, research articles, affiliations, research interests, and status updates) and various relationships among entities (e.g., scholar-friend relationship of researchers, post relationship between researchers and status updates, and writing relationship between researchers and papers), which constitute a complex heterogeneous network. By leveraging the entity and relationship data in online academic communities, this research proposes a heterogeneous network-based approach to recommending scholar-friends where information gain is used to identify valuable meta paths and a regularization-based optimization is employed to make personalized recommendations for each individual researcher. Experimental results based on historical data and user experiments demonstrate that the proposed approach can achieve better performance compared to some baseline approaches. Additionally, we further discuss how the meta paths and corresponding learned weights can help to understand researchers' preferences and behaviors.
机译:作为一种特殊类型的社交网站,在线学术社区彻底改变了研究人员之间协作和交流的方式。随着在线学术社区中注册用户数量的增长,信息过载问题给试图在此找到相关且可靠的朋友的研究人员带来了巨大挑战。与传统社交网站中的朋友不同,本研究中将在线学术社区中的朋友称为学者朋友。在线学术社区中的学者朋友推荐涉及不同的实体(例如研究者,研究文章,隶属关系,研究兴趣和状态更新)以及实体之间的各种关系(例如研究者的学者朋友关系,研究者之间的职位关系和状态更新,以及研究人员和论文之间的写作关系),这构成了一个复杂的异构网络。通过利用在线学术社区中的实体和关系数据,本研究提出了一种基于网络的异构方法来推荐学者朋友,其中信息获取用于识别有价值的元路径,而基于正则化的优化用于为每个人提供个性化推荐个人研究员。基于历史数据和用户实验的实验结果表明,与某些基准方法相比,该方法可以实现更好的性能。此外,我们进一步讨论了元路径和相应的学习权重如何帮助理解研究人员的偏好和行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号