首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Personalized Recommendation for Online Social Networks Information: Personal Preferences and Location-Based Community Trends
【24h】

Personalized Recommendation for Online Social Networks Information: Personal Preferences and Location-Based Community Trends

机译:在线社交网络信息的个性化建议:个人偏好和基于位置的社区趋势

获取原文
获取原文并翻译 | 示例

摘要

Microblogs, such as Twitter, are a way for users to express their opinions or share pieces of interesting news by posting relatively short messages (corpus) compared with the regular blogs. The volume of corpus updates that users receive daily is overwhelming. Also, as information diffuses from one user to another, some topics become of interest to only small groups of users, thus do not become widely adopted, and could fade away quickly. This paper proposes a framework to enhance user's interaction and experience in social networks. It first introduces a model that provides better subscription to the user through a dynamic personalized recommendation system that provides the user with the most important tweets. This paper also presents TrendFusion, an innovative model used to enhance the suggestions provided by the social media to the users. It analyzes, predicts the localized diffusion of trends in social networks, and recommends the most interesting trends to the user. Our performance evaluation demonstrates the effectiveness of the proposed recommendation system and shows that it improves the precision and recall of identifying important tweets by up to 36% and 80%, respectively. Results also show that TrendFusion accurately predicts places in which a trend will appear, with 98% recall and 80% precision.
机译:与常规博客相比,微博(例如Twitter)是用户通过发布相对简短的消息(语料库)来表达意见或分享有趣新闻的一种方式。用户每天收到的语料库更新数量是巨大的。另外,随着信息从一个用户传播到另一个用户,某些主题仅成为少数用户的兴趣,因此未被广泛采用,并且可能很快消失。本文提出了一个框架,以增强用户在社交网络中的互动和体验。首先介绍一种模型,该模型通过动态个性化推荐系统为用户提供更好的订阅,该系统为用户提供最重要的推文。本文还介绍了TrendFusion,这是一种创新模型,用于增强社交媒体向用户提供的建议。它分析,预测社交网络趋势的局部扩散,并向用户推荐最有趣的趋势。我们的绩效评估证明了建议的推荐系统的有效性,并表明它可以将识别重要推文的准确性和召回率分别提高36%和80%。结果还显示,TrendFusion以98%的召回率和80%的准确度准确预测趋势将出现的位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号