首页> 外文期刊>Decision support systems >Deep learning based personalized recommendation with multi-view information integration
【24h】

Deep learning based personalized recommendation with multi-view information integration

机译:基于深度学习的个性化推荐与多视图信息集成

获取原文
获取原文并翻译 | 示例

摘要

With the rapid proliferation of images on e-commerce platforms today, embracing and integrating versatile information sources have become increasingly important in recommender systems. Owing to the heterogeneity in information sources and consumers, it is necessary and meaningful to consider the potential synergy between visual and textual content as well as consumers' different cognitive styles. This paper proposes a multi-view model, namely, Deep Multi-view Information iNtEgration (Deep-MINE), to take multiple sources of content (i.e., product images, descriptions and review texts) into account and design an end-to-end recommendation model. In doing so, stacked auto-encoder networks are deployed to map multi-view information into a unified latent space, a cognition layer is added to depict consumers' heterogeneous cognition styles and an integration module is introduced to reflect the interaction of multi-view latent representations. Extensive experiments on real world data demonstrate that Deep-MINE achieves high accuracy in product ranking, especially in the cold-start case. In addition, Deep-MINE is able to boost overall model performance compared with models taking a single view, further verifying the proposed model's effectiveness on information integration.
机译:随着当今电子商务平台上图像的迅速扩散,在推荐系统中,拥抱和集成各种信息源已变得越来越重要。由于信息源和消费者的异质性,有必要和有意义的是考虑视觉和文本内容以及消费者不同认知方式之间的潜在协同作用。本文提出了一种多视图模型,即深度多视图信息融合(Deep-MINE),以考虑多种内容来源(即产品图像,描述和评论文本)并设计端到端推荐模型。为此,部署了堆叠式自动编码器网络,以将多视图信息映射到统一的潜在空间中,添加了一个认知层来描述消费者的异构认知风格,并引入了一个集成模块来反映多视图潜在的交互表示形式。在现实世界数据上进行的大量实验表明,Deep-MINE在产品排名方面具有很高的准确性,尤其是在冷启动情况下。此外,与采用单一视图的模型相比,Deep-MINE能够提高整体模型的性能,从而进一步验证了提出的模型在信息集成方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号