首页> 外文OA文献 >Deep Personalized Medical Recommendations Based on the Integration of Rating Features and Review Sentiment Analysis
【2h】

Deep Personalized Medical Recommendations Based on the Integration of Rating Features and Review Sentiment Analysis

机译:基于评级特征的整合和审查情感分析的深度个性化医学建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To comply with the rapid development of big data in mobile services, an increasing number of websites have begun to provide users with recommendation decisions in various areas, like shopping, tourism, food, and medical treatment. However, there are still some challenges in the field of medical recommendation systems, such as the lack of personalized medical recommendations and the problem of data sparseness, which seriously restricts the effectiveness of such recommendations. In this paper, we propose a personalized medical recommendation method based on a convolutional neural network that integrates revised ratings and review text, called revised rating and review based on a convolutional neural network (RR&R-CNN). First, the review text is divided into user and doctor datasets, and BERT vectorized representations are performed on them. Moreover, the original rating features are revised by adding the sentiment analysis values of the review text. Then, the vectorized review text and the revised rating features are spliced together and input into the convolutional neural network to extract the deep nonlinear feature vectors of both users and doctors. Finally, we use a factorization machine for feature interaction. We conduct comparison experiments based on a Yelp dataset in the “Health & Medical” category. The experimental results confirm the conclusion that RR&R-CNN has a better effect compared to a traditional method.
机译:为了符合移动服务中大数据的快速发展,越来越多的网站已经开始为用户提供各种领域的推荐决策,如购物,旅游,食品和医疗。然而,医学推荐系统领域仍存在一些挑战,例如缺乏个性化的医学建议和数据稀疏问题,这严重限制了这些建议的有效性。在本文中,我们提出了一种基于卷积神经网络的个性化医学推荐方法,该方法集成了修订的评级和审查文本,称为修订评级和基于卷积神经网络(RR&R-CNN)的审查。首先,将审查文本分为用户和Doct DataSets,并对其执行BERT矢量化表示。此外,通过添加审查文本的情感分析值来修订原始评级功能。然后,向量化审查文本和修订的评级功能将拼接在一起并输入到卷积神经网络中,以提取用户和医生的深度非线性特征向量。最后,我们使用分解机进行特征交互。我们在“健康与医疗”类别中基于yelp数据集进行比较实验。实验结果证实了与传统方法相比,RR&R-CNN具有更好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号