首页> 外文期刊>Decision support systems >Adapting sentiment lexicons to domain-specific social media texts
【24h】

Adapting sentiment lexicons to domain-specific social media texts

机译:使情感词典适应特定领域的社交媒体文本

获取原文
获取原文并翻译 | 示例

摘要

Social media has become the largest data source of public opinion. The application of sentiment analysis to social media texts has great potential, but faces great challenges because of domain heterogeneity. Sentiment orientation of words varies by content domain, but learning context-specific sentiment in social media domains continues to be a major challenge. The language domain poses another challenge since the language used in social media today differs significantly from that used in traditional media. To address these challenges, we propose a method to adapt existing sentiment lexicons for domain-specific sentiment classification using an unannotated corpus and a dictionary. We evaluate our method using two large developing corpora, containing 743,069 tweets related to the stock market and one million tweets related to political topics, respectively, and five existing sentiment lexicons as seeds and baselines. The results demonstrate the usefulness of our method, showing significant improvement in sentiment classification performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:社交媒体已成为公众舆论的最大数据来源。情感分析在社交媒体文本中的应用潜力巨大,但由于领域异质性而面临巨大挑战。单词的情感取向随内容领域的不同而变化,但是在社交媒体领域中学习特定于上下文的情感仍然是一个主要挑战。语言领域带来了另一个挑战,因为当今社交媒体中使用的语言与传统媒体中使用的语言有很大不同。为了解决这些挑战,我们提出了一种方法,使用无注释的语料库和字典将现有的情感词典用于特定领域的情感分类。我们使用两个发展中的大型语料库(包含与股市相关的743,069条推文和与政治话题相关的100万条推文)以及五个现有的情感词典作为种子和基准来评估我们的方法。结果证明了我们方法的有效性,显示了情感分类性能的显着提高。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号