首页> 外文期刊>Data & Knowledge Engineering >A most influential node group discovery method for influence maximization in social networks: A trust-based perspective
【24h】

A most influential node group discovery method for influence maximization in social networks: A trust-based perspective

机译:影响社交网络中最大化的最有影响力的节点组发现方法:基于信任的视角

获取原文
获取原文并翻译 | 示例

摘要

Developing a computational method for discovering the most influential nodes in social networks is a significant challenge that reveals an approach for maximizing the influence diffusion. To improve the influence degree evaluation mechanism, we propose a trust-based most influential node discovery (TMID) method for discovering influential nodes in a social network. Four phases are performed to establish influence degrees for influential node discovery: (1) an influence propagation process, which reveals the influence diffusion records among nodes for obtaining the categories of nodes in the social network; (2) a trust evaluation method, which provides methods for calculating two types of trust relationships among users, namely, direct trust and indirect trust; (3) an influence evaluation phase, which calculates the explicit binary influence among users (named active influence), the potential binary influence among users (named inactive influence), and the unary influence of nodes (named node influence); and (4) a set of algorithms for discovering the most influential nodes, which comprise two phases: a heuristic phase and a greedy phase. We also list the results of a series of simulation tests for evaluating the performance of our mechanism.
机译:开发用于发现社交网络中最有影响力的节点的计算方法是一个重大挑战,揭示了一种最大化影响扩散的方法。为了提高影响程度评估机制,我们提出了一种基于信任的最有影响力的节点发现(TMID)方法,用于在社交网络中发现有影响力的节点。执行四个阶段以建立影响节点发现的影响度:(1)影响传播过程,其揭示了节点之间的影响扩散记录,以获得社交网络中的节点类别; (2)信赖评估方法,提供了计算用户之间的两种信任关系的方法,即直接信任和间接信任; (3)影响评估阶段,它计算用户(命名主动影响)的显式二进制影响,用户(命名为非活动影响),以及节点的一致影响(命名节点影响); (4)一组用于发现最有影响力的节点的一组算法,其包括两个阶段:启发式阶段和贪婪阶段。我们还列出了一系列仿真测试的结果,以评估我们机制的性能。

著录项

  • 来源
    《Data & Knowledge Engineering》 |2019年第5期|71-87|共17页
  • 作者单位

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 201418 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social network; Most influential node group; Influence maximization; Influence evaluation; Trust;

    机译:社交网络;大多数有影响力的节点组;影响最大化;影响评估;信任;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号