首页> 外文期刊>Data & Knowledge Engineering >Stance polarity in political debates: A diachronic perspective of network homophily and conversations on Twitter
【24h】

Stance polarity in political debates: A diachronic perspective of network homophily and conversations on Twitter

机译:政治辩论中的立场极性:网络同质性和Twitter对话的历时视角

获取原文
获取原文并翻译 | 示例

摘要

In the last decade, social media gained a very significant role in public debates, and despite the many intrinsic difficulties of analyzing data streaming from on-line platforms that are poisoned by bots, trolls, and low-quality information, it is undeniable that such data can still be used to test the public opinion and overall mood and to investigate how individuals communicate with each other. With the aim of analyzing the debate in Twitter on the 2016 referendum on the reform of the Italian Constitution, we created an Italian annotated corpus for stance detection for automatically estimating the stance of a relevant number of users. We take into account a diachronic perspective to shed lights on users' opinion dynamics. Furthermore, different types of social network communities, based on friendships, retweets, quotes, and replies were investigated, in order to analyze the communication among users with similar and divergent viewpoints. We observe particular aspects of users' behavior. First, our analysis suggests that users tend to be less explicit in expressing their stances after the outcome of the vote; simultaneously, users who exhibit a high number of cross-stance relations tend to become less polarized or to adopt a more neutral style in the following phase of the debate. Second, despite social media networks are generally aggregated in homogeneous communities, we highlight that the structure of the network can strongly change when different types of social relations are considered. In particular, networks defined by means of reply-to messages exhibit inverse homophily by stance, and users use more often replies for expressing diverging opinions, instead of other forms of communication. Interestingly, we also observe that the political polarization increases forthcoming the election and decreases after the election day.
机译:在过去的十年中,社交媒体在公开辩论中发挥了非常重要的作用,尽管分析在线平台上流经机器人,巨魔和低质量信息而中毒的数据存在许多固有的困难,但不可否认的是,数据仍可用于测试舆论和整体情绪,以及调查个人之间的沟通方式。为了分析Twitter上有关2016年意大利宪法改革的全民公决中的辩论,我们创建了一个带有意大利注释的语料库用于姿态检测,以自动估算相关用户数量。我们考虑了历时性观点,以阐明用户的意见动态。此外,基于友谊,转发,报价和回复,研究了不同类型的社交网络社区,以分析具有相似和不同观点的用户之间的交流。我们观察用户行为的某些方面。首先,我们的分析表明,用户在投票结果发表后倾向于不太明确地表达自己的立场。同时,在接下来的辩论阶段,表现出大量跨立场关系的用户往往会变得两极分化或采取更为中立的风格。其次,尽管社交媒体网络通常聚集在同质社区中,但我们强调指出,当考虑不同类型的社会关系时,网络的结构可能会发生巨大变化。尤其是,通过回复消息定义的网络在立场上表现出反同质性,并且用户更常使用回复来表达分歧意见,而不是其他形式的通信。有趣的是,我们还观察到政治两极分化在即将举行的选举中有所增加,而在选举日之后有所减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号