首页> 外文期刊>Data & Knowledge Engineering >Evaluating the influence of parameter values on the performance of random subset feature selection algorithm on scientific data
【24h】

Evaluating the influence of parameter values on the performance of random subset feature selection algorithm on scientific data

机译:评估参数值对随机子集特征选择算法对科学数据性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Random Subset Feature Selection (RSFS) is Feature Subset Selection (FSS) algorithm based on the random forest technique. This algorithm is useful for selecting relevant features from large datasets resulting from scientific experiments. The random selection process eliminates bias and offers superior performance compared to other feature selection algorithms. The performance of the RSFS algorithm, which is primarily used in data mining, depends on proper parameter selection. The RSFS algorithm parameters dummy features, stopping criteria (Delta), maximum number of iterations, and K nearest neighbor distance are used for selecting the feature subset. The resulting subset, which is a reduced dataset is subjected to further processing such as classification and, detection. This study, is based on the design of experiments approach and model the effects of parameter variation on the RSFS algorithm performance. In this study, the influence of algorithm parameters on classification accuracy is evaluated.
机译:随机子集特征选择(RSFS)是基于随机森林技术的特征子集选择(FSS)算法。该算法可用于从科学实验得出的大型数据集中选择相关特征。与其他特征选择算法相比,随机选择过程可消除偏差并提供卓越的性能。主要用于数据挖掘的RSFS算法的性能取决于适当的参数选择。 RSFS算法参数虚拟特征,停止标准(Delta),最大迭代次数和K最近邻居距离用于选择特征子集。所得子集(即精简数据集)将受到进一步处理,例如分类和检测。这项研究基于实验方法的设计,并模拟了参数变化对RSFS算法性能的影响。在这项研究中,评估了算法参数对分类准确性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号