首页> 外文期刊>Data & Knowledge Engineering >The applicability of the perturbation based privacy preserving data mining for real-world data
【24h】

The applicability of the perturbation based privacy preserving data mining for real-world data

机译:基于扰动的隐私保护数据挖掘在实际数据中的适用性

获取原文
获取原文并翻译 | 示例

摘要

The perturbation method has been extensively studied for privacy preserving data mining. In this method, random noise from a known distribution is added to the privacy sensitive data before the data is sent to the data miner. Subsequently, the data miner reconstructs an approximation to the original data distribution from the perturbed data and uses the reconstructed distribution for data mining purposes. Due to the addition of noise, loss of information versus preservation of privacy is always a trade off in the perturbation based approaches. The question is, to what extent are the users willing to compromise their privacy? This is a choice that changes from individual to individual. Different individuals may have different attitudes towards privacy based on customs and cultures. Unfortunately, current perturbation based privacy preserving data mining techniques do not allow the individuals to choose their desired privacy levels. This is a drawback as privacy is a personal choice. In this paper, we propose an individually adaptable perturbation model, which enables the individuals to choose their own privacy levels. The effectiveness of our new approach is demonstrated by various experiments conducted on both synthetic and real-world data sets. Based on our experiments, we suggest a simple but effective and yet efficient technique to build data mining models from perturbed data.
机译:扰动方法已被广泛研究用于隐私保护数据挖掘。在这种方法中,来自已知分布的随机噪声会在将数据发送到数据挖掘器之前添加到隐私敏感数据中。随后,数据挖掘者从被扰动的数据中重建出原始数据分布的近似值,并将重建后的分布用于数据挖掘目的。由于增加了噪声,因此在基于干扰的方法中,信息的丢失与隐私的保护始终是一个权衡。问题是,用户愿意在多大程度上损害其隐私?这是一个因人而异的选择。根据习俗和文化,不同的个人对隐私可能有不同的态度。不幸的是,当前基于扰动的隐私保护数据挖掘技术不允许个人选择他们想要的隐私级别。这是一个缺点,因为隐私是个人选择。在本文中,我们提出了一种个体适应性的扰动模型,该模型使个人可以选择自己的隐私级别。我们对合成数据集和实际数据集进行的各种实验证明了我们新方法的有效性。根据我们的实验,我们建议一种简单但有效而又有效的技术来从扰动数据中构建数据挖掘模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号