首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Tree-Based Data Perturbation Approach for Privacy-Preserving Data Mining
【24h】

A Tree-Based Data Perturbation Approach for Privacy-Preserving Data Mining

机译:一种基于树的数据摄动方法,用于保护隐私的数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

Due to growing concerns about the privacy of personal information, organizations that use their customers' records in data mining activities are forced to take actions to protect the privacy of the individuals. A frequently used disclosure protection method is data perturbation. When used for data mining, it is desirable that perturbation preserves statistical relationships between attributes, while providing adequate protection for individual confidential data. To achieve this goal, we propose a kd-tree based perturbation method, which recursively partitions a data set into smaller subsets such that data records within each subset are more homogeneous after each partition. The confidential data in each final subset are then perturbed using the subset average. An experimental study is conducted to show the effectiveness of the proposed method.
机译:由于越来越关注个人信息的隐私,在数据挖掘活动中使用其客户记录的组织被迫采取措施来保护个人隐私。常用的公开保护方法是数据扰动。当用于数据挖掘时,希望扰动保留属性之间的统计关系,同时为单个机密数据提供足够的保护。为了实现此目标,我们提出了一种基于kd树的扰动方法,该方法将数据集递归地划分为较小的子集,以使每个子集内的数据记录在每个分区之后更加均匀。然后,使用子集平均值对每个最终子集中的机密数据进行扰动。实验研究表明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号