首页> 外文期刊>Journal of supercomputing >An improved privacy-preserving data mining technique using singular value decomposition with three-dimensional rotation data perturbation
【24h】

An improved privacy-preserving data mining technique using singular value decomposition with three-dimensional rotation data perturbation

机译:利用三维旋转数据扰动的奇异值分解改进的隐私保留数据挖掘技术

获取原文
获取原文并翻译 | 示例

摘要

Recent advancements in data mining have given rise to a new channel of research, coined as privacy-preserving data mining (PPDM). PPDM technology allows us to derive useful information from vast amounts of data while protecting privacy of individual records. This paper proposed a methodology based on the machine learning algorithm called singular value decomposition (SVD) and 3D rotation data perturbation (RDP) for preserving privacy of data. Decomposition and dimensionality reduction helps to eliminate sensitive information, and perturbed matrix is generated. The original and perturbed data are classified using different classifiers, and the performance is measured in terms of accuracy rate. Accuracy is the degree of correlation between the absolute observation and the actual observations. Experimental results revealed that the proposed scheme outperforms by achieving excellent accuracy for matrices of different sizes.
机译:数据挖掘的最新进展使新的研究渠道产生了上升,作为隐私保留数据挖掘(PPDM)。 PPDM技术允许我们从大量数据中导出有用的信息,同时保护个人记录的隐私。 本文提出了一种基于机器学习算法的方法,称为奇异值分解(SVD)和3D旋转数据扰动(RDP),用于保留数据的隐私。 分解和维度减少有助于消除敏感信息,并且产生扰动矩阵。 原始和扰动的数据使用不同的分类器进行分类,并且在精度率方面测量性能。 准确性是绝对观察与实际观测之间的相关程度。 实验结果表明,所提出的方案通过实现不同尺寸的矩阵的优异精度优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号