首页> 外文期刊>Data & Knowledge Engineering >A new look at generating multi-join continuous query plans: A qualified plan generation problem
【24h】

A new look at generating multi-join continuous query plans: A qualified plan generation problem

机译:生成多联接连续查询计划的新外观:合格的计划生成问题

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art relational and continuous algorithms alike have focused on producing optimal or near-optimal query plans by minimizing a single cost function. However, ensuring accurate yet real-time responses for stream processing applications necessitates that the system identifies qualified rather than optimal query plans - with the former guaranteeing that their utilization of both the CPU and the memory resources stays within their respective system capacities. In such scenarios, being optimal in one resource usage while out-of-bound in the other is not viable. Our experimental study illustrates that to be effective a qualified plan optimizer must explore an extended plan search space called the jtree space composed not only of the standard mjoin and binary join plans, but also of general join trees with mixed operator types. While our proposed dynamic programming-based JTree-Finder algorithm is guaranteed to generate a qualified query plan if such a plan exists in the search space, its exponential time complexity makes it not viable for continuous stream environments. To facilitate run-time optimization, we thus propose an efficient yet effective two-layer plan generation framework. The proposed framework first exploits the positive correlation between the CPU and memory usages to obtain plans that are minimal in at least one of the two resource usages. In our second layer we propose two alternative polynomial-time algorithms to explore the negative correlation between the resource usages to successfully generate query plans that adhere to both CPU and memory resource constraints. Effectiveness and efficiency of the proposed algorithms are experimentally evaluated by comparing them to each other as well as state-of-the-art techniques.
机译:最新的关系和连续算法都致力于通过最小化单个成本函数来产生最佳或接近最佳的查询计划。但是,要确保对流处理应用程序的准确而实时的响应,必须使系统识别出合格的查询计划,而不是最优的查询计划,而前者则要确保它们对CPU和内存资源的利用率都保持在各自的系统容量之内。在这种情况下,在一种资源的使用上优化而在另一种资源上使用越界是不可行的。我们的实验研究表明,要使合格的计划优化器有效,必须探索一个扩展的计划搜索空间,称为jtree空间,该空间不仅包括标准mjoin和二进制联接计划,而且还包括具有混合运算符类型的常规联接树。尽管我们建议的基于动态编程的JTree-Finder算法可以确保在搜索空间中存在这样的计划时生成合格的查询计划,但其指数时间复杂性使其对于连续流环境不可行。为了促进运行时优化,我们因此提出了一个有效而有效的两层计划生成框架。提出的框架首先利用CPU和内存使用率之间的正相关性来获得在两种资源使用率中至少一种最小的计划。在第二层中,我们提出了两种替代的多项式时间算法,以探索资源使用之间的负相关关系,以成功生成同时符合CPU和内存资源约束的查询计划。通过相互比较以及最新技术,对所提出算法的有效性和效率进行了实验评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号