首页> 外文期刊>Computing and informatics >MINING QUERY PLANS FOR FINDING CANDIDATE QUERIES AND SUB-QUERIES FOR MATERIALIZED VIEWS IN BI SYSTEMS WITHOUT CUBE GENERATION
【24h】

MINING QUERY PLANS FOR FINDING CANDIDATE QUERIES AND SUB-QUERIES FOR MATERIALIZED VIEWS IN BI SYSTEMS WITHOUT CUBE GENERATION

机译:在没有多维数据集生成的情况下,BI系统中用于查找候选查询和子查询的挖掘查询计划

获取原文
获取原文并翻译 | 示例

摘要

Materialized views are important for optimizing Business Intelligence (BI) systems when they are designed without data cubes. Selecting candidate queries from large number of queries for materialized views is a challenging task. Most of the work done in the past involves finding out frequent queries from the past workload and creating materialized views from such queries by either manually analyzing workload or using approximate string matching algorithms using query text. Most of the existing methods suggest complete queries but ignore query components such as sub queries for creation of materialized views. This paper presents a novel method to determine on which queries and query components materialized views can be created to optimize aggregate and join queries by mining database of query execution plans which are in the form of binary trees. The proposed algorithm showed significant improvement in terms of more number of optimized queries because it is using the execution plan tree of the query as a basis of selection of query to be optimized using materialized views rather than choosing query text which is used by traditional methods. For selecting a correct set of queries to be optimized using materialized views, the paper proposes efficient specialized frequent tree component mining algorithm with novel heuristics to prune search space. These frequent components are used to determine the possible set of candidate queries for creation of materialized views. Experimentation on standard, real and synthetic data sets, and also the theoretical basis, proved that the proposed method is able to optimize a large number of queries with less number of materialized views and showed a significant improvement in performance compared to traditional methods.
机译:物化视图在没有数据多维数据集的情况下设计对于优化商业智能(BI)系统非常重要。从大量查询中为物化视图选择候选查询是一项艰巨的任务。过去完成的大多数工作都涉及从过去的工作量中找出频繁的查询,并通过手动分析工作量或使用带有查询文本的近似字符串匹配算法从此类查询中创建物化视图。大多数现有方法建议使用完整查询,但忽略查询组件(例如用于创建实例化视图的子查询)。本文提出了一种新颖的方法,该方法可确定挖掘哪些执行和查询组件的物化视图,以通过挖掘查询执行计划的数据库(二叉树形式)来优化聚合和联接查询。所提出的算法在更多优化查询方面显示出显着改进,因为它使用查询的执行计划树作为使用物化视图优化查询的基础,而不是选择传统方法所使用的查询文本。为了选择正确的查询集以使用实例化视图进行优化,本文提出了一种有效的专业化频繁树成分挖掘算法,该算法采用新颖的启发式方法来修剪搜索空间。这些频繁使用的组件用于确定可能的候选查询集,以创建实例化视图。通过对标准,真实和合成数据集进行的实验以及理论基础,证明了该方法能够以较少的物化视图来优化大量查询,并且与传统方法相比,其性能有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号