首页> 外文期刊>Cybemetics and Systems Analysis >OPTIMAL QUADRATURE EVALUATION OF INTEGRALS OF RAPIDLY OSCILLATING FUNCTIONS IN LIPSCHITZ INTERPOLATION CLASS IN CASE OF STRONG OSCILLATION
【24h】

OPTIMAL QUADRATURE EVALUATION OF INTEGRALS OF RAPIDLY OSCILLATING FUNCTIONS IN LIPSCHITZ INTERPOLATION CLASS IN CASE OF STRONG OSCILLATION

机译:强振荡情况下Lipschitz插值类中快速振荡函数积分的最优正交估计

获取原文
获取原文并翻译 | 示例

摘要

An accuracy-optimal quadrature formula is derived to evaluate the Fourier transform of compact functions from an interpolation Lipschitz class. The case of strong oscillation of the integrand is considered. The optimality is substantiated based on the boundary function method, namely, constructing the Chebyshev center and Chebyshev radius in the uncertainty domain of the problem solution.
机译:从插值Lipschitz类推导了精度最佳的正交公式,以评估紧函数的傅立叶变换。考虑了被积物强烈振荡的情况。基于边界函数法证明了最优性,即在问题解决方案的不确定域中构造切比雪夫中心和切比雪夫半径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号