首页> 外文期刊>Cybernetics, IEEE Transactions on >Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts
【24h】

Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts

机译:基于头部模型的人为行为生成,用于机器人跟踪外部目标和身体部位

获取原文
获取原文并翻译 | 示例

摘要

Facing and pointing toward moving targets is a usual and natural behavior in daily life. Social robots should be able to display such coordinated behaviors in order to interact naturally with people. For instance, a robot should be able to point and look at specific objects. This is why, a scheme to generate coordinated head-arm motion for a humanoid robot with two degrees-of-freedom for the head and seven for each arm is proposed in this paper. Specifically, a virtual plane approach is employed to generate the analytical solution of the head motion. A quadratic program (QP)-based method is exploited to formulate the coordinated dual-arm motion. To obtain the optimal solution, a simplified recurrent neural network is used to solve the QP problem. The effectiveness of the proposed scheme is demonstrated using both computer simulation and physical experiments.
机译:面对并指向移动的目标是日常生活中常见的自然行为。社交机器人应该能够显示这种协调的行为,以便与人自然互动。例如,机器人应该能够指向并查看特定的对象。因此,本文提出了一种为人形机器人产生协调的头臂运动的方案,该方案的头部有两个自由度,每个臂有七个自由度。具体而言,采用虚拟平面方法来生成头部运动的解析解。利用基于二次程序(QP)的方法来制定协调的双臂运动。为了获得最佳解决方案,简化的递归神经网络用于解决QP问题。通过计算机仿真和物理实验证明了该方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号