首页> 外文期刊>Cybernetics, IEEE Transactions on >Reinforced Extreme Learning Machines for Fast Robust Regression in the Presence of Outliers
【24h】

Reinforced Extreme Learning Machines for Fast Robust Regression in the Presence of Outliers

机译:增强的极限学习机,在存在异常值的情况下实现快速鲁棒回归

获取原文
获取原文并翻译 | 示例

摘要

Extreme learning machines (ELMs) are fast methods that obtain state-of-the-art results in regression. However, they are not robust to outliers and their meta-parameter (i.e., the number of neurons for standard ELMs and the regularization constant of output weights for L2 -regularized ELMs) selection is biased by such instances. This paper proposes a new robust inference algorithm for ELMs which is based on the pointwise probability reinforcement methodology. Experiments show that the proposed approach produces results which are comparable to the state of the art, while being often faster.
机译:极限学习机(ELM)是快速获得回归结果的快速方法。然而,它们对于异常值不是鲁棒的,并且其元参数(即,用于标准ELM的神经元数量和用于L2正规化的ELM的输出权重的正规化常数)选择受到此类情况的影响。本文提出了一种新的鲁棒推理算法,该算法基于点概率增强方法。实验表明,所提出的方法所产生的结果可与现有技术相媲美,但速度通常更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号