首页> 外文期刊>Cybernetics, IEEE Transactions on >Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems
【24h】

Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems

机译:一类非线性离散时间分三角系统的基于最优控制的自适应神经网络设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input–multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
机译:在本文中,我们为一类未知的非线性离散时间系统提出了一种基于最优控制方案的自适应神经网络设计。受控系统采用块三角形多输入多输出纯反馈结构,即,每个子系统的每个方程式都包含状态耦合和输入耦合以及非仿射函数。设计目标是提供一种控制方案,该方案不仅可以保证系统的稳定性,而且可以实现最佳的控制性能。本文的主要贡献是,对于此类系统而言,这是首次实现最佳性能。由于子系统之间的相互作用,要获得最佳的控制信号是一项艰巨的任务。设计思想是:1)将系统转换为输出预测器形​​式; 2)对于输出预测器,理想控制信号和策略效用函数可以分别通过使用动作网络和评论器网络来近似; 3)利用权重更新规则构造最优控制信号,以基于梯度下降法进行设计。基于差分李雅普诺夫方法可以证明系统的稳定性。最后,通过数值仿真来说明所提方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号