首页> 外文期刊>Cybernetics, IEEE Transactions on >Cross-View Retrieval via Probability-Based Semantics-Preserving Hashing
【24h】

Cross-View Retrieval via Probability-Based Semantics-Preserving Hashing

机译:通过基于概率的语义保留散列进行跨视图检索

获取原文
获取原文并翻译 | 示例

摘要

For efficiently retrieving nearest neighbors from large-scale multiview data, recently hashing methods are widely investigated, which can substantially improve query speeds. In this paper, we propose an effective probability-based semantics-preserving hashing (SePH) method to tackle the problem of cross-view retrieval. Considering the semantic consistency between views, SePH generates one unified hash code for all observed views of any instance. For training, SePH first transforms the given semantic affinities of training data into a probability distribution, and aims to approximate it with another one in Hamming space, via minimizing their Kullback-Leibler divergence. Specifically, the latter probability distribution is derived from all pair-wise Hamming distances between to-be-learnt hash codes of the training data. Then with learnt hash codes, any kind of predictive models like linear ridge regression, logistic regression, or kernel logistic regression, can be learnt as hash functions in each view for projecting the corresponding view-specific features into hash codes. As for out-of-sample extension, given any unseen instance, the learnt hash functions in its observed views can predict view-specific hash codes. Then by deriving or estimating the corresponding output probabilities with respect to the predicted view-specific hash codes, a novel probabilistic approach is further proposed to utilize them for determining a unified hash code. To evaluate the proposed SePH, we conduct extensive experiments on diverse benchmark datasets, and the experimental results demonstrate that SePH is reasonable and effective.
机译:为了有效地从大规模多视图数据中检索最近的邻居,最近对散列方法进行了广泛研究,该方法可以显着提高查询速度。在本文中,我们提出了一种有效的基于概率的语义保留哈希(SePH)方法来解决跨视图检索的问题。考虑到视图之间的语义一致性,SePH会为任何实例的所有观察到的视图生成一个统一的哈希码。对于训练,SePH首先将训练数据的给定语义亲和度转换为概率分布,并通过最小化其Kullback-Leibler散度,以在汉明空间中与另一个近似。具体地,后者的概率分布是从训练数据的待学习哈希码之间的所有成对汉明距离得出的。然后,借助学习到的哈希码,可以将每种类型的预测模型(如线性岭回归,逻辑回归或核逻辑回归)作为每个视图中的哈希函数进行学习,以将特定于视图的特定特征投影到哈希码中。对于样本外扩展,给定任何看不见的实例,在其观察到的视图中学习到的哈希函数可以预测特定于视图的哈希码。然后,通过针对预测的特定于视图的哈希码推导或估计相应的输出概率,进一步提出了一种新颖的概率方法,以利用它们来确定统一的哈希码。为了评估提出的SePH,我们在各种基准数据集上进行了广泛的实验,实验结果表明SePH是合理且有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号