首页> 外文OA文献 >Cross-view Retrieval via Probability-based Semantics-Preserving Hashing
【2h】

Cross-view Retrieval via Probability-based Semantics-Preserving Hashing

机译:通过基于概率的语义保留散列进行跨视图检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For efficiently retrieving nearest neighbours from large-scale multi-view data, recently hashing methods are widely investigated, which can substantially improve query speeds. In this paper, we propose an effective probability-based Semantics-Preserving Hashing method to tackle the problem of cross-view retrieval, termed SePH. Considering the semantic consistency between views, SePH generates one unified hash code for all observed views of any instance. For training, SePH firstly transforms the given semantic affinities of training data into a probability distribution, and aims to approximate it with another one in Hamming space, via minimizing their Kullback-Leibler divergence. Specifically, the latter probability distribution is derived from all pair-wise Hamming distances between to be-learnt hash codes of the training data. Then with learnt hash codes, any kind of predictive models like linear ridge regression, logistic regression or kernel logistic regression, can be learnt as hash functions in each view for projecting the corresponding view-specific features into hash codes. As for out of-sample extension, given any unseen instance, the learnt hash functions in its observed views can predict view-specific hash codes. Then by deriving or estimating the corresponding output probabilities w.r.t the predicted view-specific hash codes, a novel probabilistic approach is further proposed to utilize them for determining a unified hash code. To evaluate the proposed SePH, we conduct extensive experiments on diverse benchmark datasets,and the experimental results demonstrate that SePH is reasonable and effective.
机译:为了有效地从大规模多视图数据中检索最近的邻居,最近对散列方法进行了广泛研究,该方法可以显着提高查询速度。在本文中,我们提出了一种有效的基于概率的“语义保留散列”方法来解决跨视图检索问题,称为SePH。考虑到视图之间的语义一致性,SePH会为任何实例的所有观察到的视图生成一个统一的哈希码。对于训练,SePH首先将训练数据的给定语义亲和力转换为概率分布,然后通过最小化其Kullback-Leibler散度,以在汉明空间中与另一个近似。具体地,后一概率分布是从训练数据的待学习哈希码之间的所有成对汉明距离得出的。然后,借助学习到的哈希码,可以将每种类型的预测模型(如线性岭回归,逻辑回归或核逻辑回归)作为每个视图中的哈希函数进行学习,以将特定于视图的特定特征投影到哈希码中。至于样本外扩展,在任何未知实例的情况下,学习到的哈希函数在其观察到的视图中都可以预测特定于视图的哈希码。然后,通过推导或估计不包含预测的特定于视图的哈希码的相应输出概率,进一步提出了一种新颖的概率方法,以利用它们来确定统一的哈希码。为了评估提出的SePH,我们在各种基准数据集上进行了广泛的实验,实验结果表明SePH是合理且有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号