首页> 外文期刊>Cryptography and Communications >New bounds on the covering radius of the second order Reed-Muller code of length 128
【24h】

New bounds on the covering radius of the second order Reed-Muller code of length 128

机译:覆盖半径的覆盖半径的新界限为长度为128

获取原文
获取原文并翻译 | 示例

摘要

In 1981, Schatz proved that the covering radius of the binary Reed-Muller code RM(2, 6) is 18. It was previously shown that the covering radius of RM(2, 7) is between 40 and 44. In this paper, we prove that the covering radius of RM(2, 7) is at most 42. As a corollary, we also find new upper bounds for RM(2, n), n =8, 9, 10. Moreover, we give a sufficient and necessary condition for the covering radius of RM(2, 7) to be equal to 42. Using this condition, we prove that the covering radius of RM(2, 7) in RM(4, 7) is exactly 40, and as a by-product, we conclude that the covering radius of RM(2, 7) in the set of 2-resilient Boolean functions is at most 40, which improves the bound given by Borissov et al. (IEEE Trans. Inf. Theory 51(3):1182-1189, 2005).
机译:1981年,Schatz证明了二进制簧片-Muller代码RM(2,6)的覆盖半径为18.先前如图所示,RM(2,7)的覆盖半径为40至44.在本文中,我们证明,RM(2,7)的覆盖半径最多是至多42.作为推论,我们还发现RM(2,N)的新上限,N = 8,9,10。此外,我们给了足够的覆盖半径的RM(2,7)的必要条件等于42.使用这种情况,我们证明了RM(4,7)中的RM(2,7)的覆盖半径恰好是40,并且如副产物,我们得出结论,该组2个弹性布尔函数中的RM(2,7)的覆盖半径至多40,这改善了Borissov等人给出的绑定。 (IEEE Trans。INF。理论51(3):1182-1189,2005)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号