首页> 外文期刊>Control Theory & Applications, IET >Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation
【24h】

Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

机译:随机混合模型参数估计在城市交通流量估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator.
机译:这项研究提出了一种新颖的基于数据的方法,用于估计描述具有信号交叉口的城市交通网络中交通流量的随机混合模型的参数。该模型表示交通流量的演变,它测量每个时间单位通过给定位置的车辆数量。使用与模式有关的一阶自回归(AR)随机过程来描述此业务流速率。 AR过程的参数根据流量操作的模式采用不同的值-自由流动,拥塞或故障-使其成为混合随机过程。模式切换根据一阶马尔可夫链发生。这项研究提出了一种期望最大化(EM)技术,用于估计此Markovian模式过程的过渡矩阵以及每种模式的AR模型的参数。该技术已应用于印度尼西亚雅加达市的实际交通流量数据。这样获得的模型通过使用平滑推理算法和在线粒子滤波器进行验证。作者还开发了一种EM参数估计,该方法与时窗偏移技术相结合,对于定期更新混合模型的参数(产生自适应交通流状态估计器)可能是有用且实用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号