首页> 外文期刊>Control Theory & Applications, IET >Self-triggered distributed model predictive control for flocking of multi-agent systems
【24h】

Self-triggered distributed model predictive control for flocking of multi-agent systems

机译:用于多主体系统植绒的自触发分布式模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

This study presents a self-triggered distributed model predictive control algorithm for the flock of a multi-agent system. All the agents in a flock are endowed with the capability of determining the sampling time adaptively to reduce the unnecessary energy consumption in communication and control updates. The agents are dynamically decoupled in a flock, and each agent is driven by a local model predictive controller, which is designed by minimising the position irregularity between the agent and its neighbours, velocity tracking errors as well as its control efforts. Moreover, the collision avoidance is considered by introducing constraints in the model predictive minimisation problem. In order to adaptively determine the sampling time, a self-triggered algorithm is designed by guaranteeing the decrease of the Lyapunov function. Finally, numerical simulations are given to demonstrate the feasibility of the proposed flocking algorithm.
机译:本研究提出了一种用于多智能体系统群的自触发分布式模型预测控制算法。羊群中的所有代理均具有自适应确定采样时间的能力,以减少通信和控制更新中不必要的能耗。这些智能体成群动态解耦,并且每个智能体都由本地模型预测控制器驱动,该控制器通过最小化智能体与其邻居之间的位置不规则性,速度跟踪误差及其控制工作而设计。此外,通过在模型预测最小化问题中引入约束来考虑避免碰撞。为了自适应地确定采样时间,通过保证李雅普诺夫函数的减少来设计一种自触发算法。最后,通过数值模拟证明了该算法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号