首页> 外文期刊>IEEE Transactions on Control Systems Technology >Adaptive Back-Stepping Neural Controller for Reconfigurable Flight Control Systems
【24h】

Adaptive Back-Stepping Neural Controller for Reconfigurable Flight Control Systems

机译:可重构飞行控制系统的自适应反步神经控制器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive back-stepping neural controller for reconfigurable flight control of aircraft in the presence of large changes in the aerodynamic characteristics and also failures. In the proposed controller, radial basis function (RBF) neural networks are utilized in an adaptive back-stepping architecture with full state measurement. For the RBF neural networks, a learning scheme in which the network starts with no hidden neurons and adds new hidden neurons based on the trajectory error is developed. Using the Lyapunov theory, stable tuning rules are derived for the update of the centers, widths, and weights of the RBF neural networks and a proof of stability in the ultimate bounded sense is given for the resulting controller. The theory is illustrated using the longitudinal model of an open-loop unstable high-performance aircraft in the terminal landing phase subjected to single elevator hard over failure and severe winds. The resulting controller is able to successfully stabilize and land the aircraft within a tight touch down dispersion.
机译:本文提出了一种自适应反步神经控制器,用于在空气动力学特性发生较大变化以及出现故障的情况下对飞机进行可重构的飞行控制。在提出的控制器中,径向基函数(RBF)神经网络被用于具有完整状态测量的自适应反步结构中。对于RBF神经网络,开发了一种学习方案,其中网络从没有隐藏的神经元开始,然后基于轨迹误差添加新的隐藏的神经元。使用李雅普诺夫(Lyapunov)理论,导出稳定的调节规则以更新RBF神经网络的中心,宽度和权重,并为最终控制器提供最终极限意义上的稳定性证明。使用开环不稳定的高性能飞机在终端着陆阶段遭受单电梯硬故障和强风的纵向模型来说明该理论。最终的控制器能够成功地稳定飞机并将其降落在紧密的着陆分散范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号