首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Fractional Order Periodic Adaptive Learning Compensation for State-Dependent Periodic Disturbance
【24h】

Fractional Order Periodic Adaptive Learning Compensation for State-Dependent Periodic Disturbance

机译:基于状态的周期性扰动的分数阶周期性自适应学习补偿

获取原文
获取原文并翻译 | 示例

摘要

In this brief, a fractional order periodic adaptive learning compensation (FO-PALC) method is devised for the general state-dependent periodic disturbance minimization on the position and velocity servo platform. In the first trajectory period of the proposed FO-PALC scheme, a fractional order adaptive compensator is designed which can guarantee the boundedness of the system state, input and output signals. From the second repetitive trajectory period and onward, one period previously stored information along the state axis is used in the current adaptation law. Asymptotical stability proof of the system with the proposed FO-PALC is presented. Experimental validation is demonstrated to show the benefits from using fractional calculus in periodic adaptive learning compensation for the state-dependent periodic disturbance.
机译:在本文中,设计了分数阶周期性自适应学习补偿(FO-PALC)方法,以最小化位置和速度伺服平台上与状态有关的周期性干扰。在提出的FO-PALC方案的第一个轨迹周期中,设计了分数阶自适应补偿器,该补偿器可以保证系统状态,输入和输出信号的有界性。从第二重复轨迹周期开始,在当前的适应定律中使用沿状态轴预先存储的一个周期的信息。提出了所提出的FO-PALC系统的渐近稳定性证明。实验验证表明,使用分数演算在依赖于状态的周期性干扰的周期性自适应学习补偿中的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号