首页> 外文期刊>Control Systems Technology, IEEE Transactions on >AFR-Based Fuel Ethanol Content Estimation in Flex-Fuel Engines Tolerant to MAF Sensor Drifts
【24h】

AFR-Based Fuel Ethanol Content Estimation in Flex-Fuel Engines Tolerant to MAF Sensor Drifts

机译:耐MAF传感器漂移的Flex-Fuel发动机中基于AFR的燃料乙醇含量估算

获取原文
获取原文并翻译 | 示例

摘要

Flexible fuel vehicles (FFVs) can operate on a blend of ethanol and gasoline in any volumetric concentration of up to 85% ethanol (93% in Brazil). Existing FFVs rely on ethanol sensor installed in the vehicle fueling system, or on an ethanol estimation based on air-to-fuel ratio (AFR) regulation via an exhaust gas oxygen (EGO) or $lambda $ sensor. The EGO-based ethanol detection is desirable from cost and maintenance perspectives but it is known to be prone to large errors during mass air flow sensor drifts. Ethanol content estimation can be realized by a feedback-based fuel correction of the feedforward-based fuel calculation using an exhaust gas oxygen sensor. When the fuel correction is attributed to the difference in stoichiometric air-to-fuel ratio (SAFR) between ethanol and gasoline, it can be used for ethanol estimation. When the fuel correction is attributed to a mass air flow (MAF) sensor error, it can be used for sensor drift estimation and correction. Deciding under which condition to blame (and detect) ethanol and when to switch to sensor correction burdens the calibration of FFV engine controllers. Moreover, erroneous decisions can lead to biases in ethanol estimation and in MAF sensor correction. In this paper, we present AFR-based ethanol content estimation, associated sensitivity and dynamical analysis, and a cylinder air flow estimation scheme that accounts for MAF sensor drift or bias using an intake manifold absolute pressure (MAP) sensor. The proposed fusion of the MAF, MAP, and $lambda $ sensor measurements prevents severe misestimation of ethanol content in flex fuel vehicles.
机译:柔性燃料汽车(FFV)可以在乙醇和汽油的混合物中运行,乙醇的体积浓度最高为85%(巴西为93%)。现有的FFV依赖于安装在车辆加油系统中的乙醇传感器,或基于通过废气氧气(EGO)的空燃比(AFR)法规或 $ lambda $ 传感器。从成本和维护的角度来看,基于EGO的乙醇检测是理想的,但众所周知,在质量空气流量传感器漂移期间,容易产生较大的误差。乙醇含量估计可以通过使用排气氧传感器对基于前馈的燃料计算进行基于反馈的燃料校正来实现。当燃料校正归因于乙醇和汽油之间的化学计量空燃比(SAFR)的差异时,可将其用于乙醇估算。当燃料校正归因于空气质量流量(MAF)传感器误差时,可将其用于传感器漂移估算和校正。确定在哪种情况下归咎于(和检测)乙醇,以及何时切换至传感器校正会给FFV发动机控制器的校准带来负担。此外,错误的决策可能导致乙醇估计和MAF传感器校正方面的偏差。在本文中,我们介绍了基于AFR的乙醇含量估算,相关的灵敏度和动力学分析,以及使用进气歧管绝对压力(MAP)传感器解决MAF传感器漂移或偏差的气缸气流估算方案。提议的MAF,MAP和 $ lambda $ 传感器测量结果的融合可防止对柔性燃料汽车中乙醇含量的严重错误估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号