首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Individual Blade Pitch Control of Floating Offshore Wind Turbines for Load Mitigation and Power Regulation
【24h】

Individual Blade Pitch Control of Floating Offshore Wind Turbines for Load Mitigation and Power Regulation

机译:浮动近海风力涡轮机的单个刀片俯仰控制,用于负载缓解和功率调节

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a new strategy for individual blade pitch control to regulate power production while simultaneously alleviating structural loads on spar-type floating offshore wind turbines. Individual blade pitch control types of algorithms for offshore wind turbines are sparse in the literature though there are expected benefits from experience on such types of controllers for onshore wind turbines. Wind turbine blade pitch actuators are primarily used to maintain the rated power production at the above-rated wind speeds, and therefore, control algorithms are usually developed only to regulate power production. The scope of reducing structural loads using individual pitch control has been proven to be very promising over the last decade, and numerous individual pitch control algorithms have been proposed by researchers. However, reduction in structural loads often results in a degradation in power production and regulation. Furthermore, improving power regulation often has a detrimental effect on the floating platform motion. In this article, a new control strategy is proposed to achieve the two competing objectives. The proposed controller combines a low-authority linear-quadratic (LQ) controller with an integral action to reduce the 1P (once per revolution) aerodynamic loads while regulating power production using the same pitch actuators that are traditionally used only to optimize power production. The proposed controller is compared against the baseline controller (BC) used by the state-of-the-art wind turbine simulator FAST using a high-fidelity aeroelastic offshore wind turbine model. Numerical results show that the proposed controller offers improved performance in optimizing power production and reducing wind turbine and platform loads compared with the BC over an envelope of wind-wave loading environment.
机译:本文提出了一种新的单个刀片间距控制策略,以调节电力生产,同时缓解浮动浮动海上风力涡轮机的结构载荷。近海风力涡轮机的各个刀片俯仰控制类型在文献中稀疏,虽然在陆上风力涡轮机等类型的控制器上的经验中受益。风力涡轮机叶片桨距致动器主要用于将额定功率产生在上述风速下,因此,通常仅开发控制算法来调节电力生产。在过去十年中,已经证明使用单个俯仰控制减少结构负荷的范围,并且研究人员提出了许多单独的俯仰控制算法。然而,结构载荷的降低通常导致电力生产和调节中的降解。此外,提高功率调节通常对浮动平台运动产生不利影响。在本文中,提出了一种新的控制策略来实现两个竞争目标。所提出的控制器将低当局线性二次(LQ)控制器具有整体作用以减少1P(每旋转一次)空气动力学负载,同时使用传统上使用的相同间距执行器来调节电力产生来优化电力生产。将所提出的控制器与最先进的风力涡轮机模拟器使用的基线控制器(BC)进行比较,使用高保真气动弹性海上风力涡轮机模型。数值结果表明,与风波装载环境的信封相比,该拟议控制器在优化电力生产和减少风力涡轮机和平台负荷方面提供了改进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号