首页> 外文期刊>IEEE Transactions on Control Systems Technology >Model-Based Estimation of Lithium Concentrations and Temperature in Batteries Using Soft-Constrained Dual Unscented Kalman Filtering
【24h】

Model-Based Estimation of Lithium Concentrations and Temperature in Batteries Using Soft-Constrained Dual Unscented Kalman Filtering

机译:基于模型的锂浓度和电池温度的估算使用软限制双重无置卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

This brief proposes an electrochemical model-based estimator of the Lithium-ion (Li-ion) concentration and temperature of a Li-ion cell. The use of the electrochemical approach allows for the estimation of the spatial distribution of lithium concentration and temperature. The estimation is based on a soft-constrained dual unscented Kalman filter (DUKF) designed on the pseudo-2-D model of a Li-ion cell. The dual structure, along with parallelization, reduces the computational complexity, whereas the soft-constraint improves convergence. A simulation analysis validates the approach showing bulk state of charge (SoC) estimation error lower than 1.5%, solid-phase lithium concentration estimation errors of less than 4%, and temperature estimation errors within 0.2 degrees C from the true value in any point of the cell.
机译:本简述提出了一种基于电化学模型的锂离子(锂离子)浓度和锂离子电池温度的基于电化学模型的估计器。电化学方法的使用允许估计锂浓度和温度的空间分布。估计基于设计在锂离子电池的伪-2-D模型上的软受限的双重无容卡尔曼滤波器(DUKF)。双结构以及并行化降低了计算复杂性,而软限制则提高了收敛性。仿真分析验证显示大于1.5%,固相锂浓度估计误差小于4%的批量电荷(SOC)估计误差的方法,以及在任何点中的真实值中0.2摄氏度内的温度估计误差。细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号