首页> 外文期刊>IEEE Transactions on Control Systems Technology >Scalable Model Predictive Control for Autonomous Mobility-on-Demand Systems
【24h】

Scalable Model Predictive Control for Autonomous Mobility-on-Demand Systems

机译:可扩展模型预测控制,用于自动流动性按需系统

获取原文
获取原文并翻译 | 示例

摘要

Technological advances in self-driving vehicles will soon enable the implementation of large-scale mobility-on-demand (MoD) systems. The efficient management of fleets of vehicles remains a key challenge, in particular to achieve a demand-aligned distribution of available vehicles, commonly referred to as rebalancing. In this article, we present a discrete-time model of an autonomous MoD system, in which unit capacity self-driving vehicles serve transportation requests consisting of a (time, origin, destination) tuple on a directed graph. Time delays in the discrete-time model are approximated as first-order lag elements yielding a sparse model suitable for model predictive control (MPC). The well-posedness of the model is demonstrated, and a characterization of its equilibrium points is given. Furthermore, we show the stabilizability of the model and propose an MPC scheme that, due to the sparsity of the model, can be applied even to large-scale cities. We verify the performance of the scheme in a multiagent transport simulation and demonstrate that service levels outperform those of the existing rebalancing schemes for identical fleet sizes.
机译:自动驾驶车辆的技术进步将很快能够实现大规模移动的按需(MOD)系统。车队的有效管理仍然是一个关键挑战,特别是实现可用车辆的需求调整,通常被称为重新平衡。在本文中,我们介绍了自主模式系统的离散时间模型,其中单位容量自驾驶车辆提供由定向图上的(时间,原点,目的地)元组组成的运输请求。离散时间模型中的时间延迟被近似为一阶滞后元件,其产生适合于模型预测控制(MPC)的稀疏模型。对模型的良好呈现,并给出了其平衡点的表征。此外,我们展示了模型的稳定性,并提出了一种MPC方案,即由于模型的稀疏性,也可以应用于大型城市。我们验证了该方案在多重运输模拟中的性能,并证明服务水平优于现有的舰队尺寸的现有重新平衡方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号