首页> 外文期刊>IEEE Transactions on Control Systems Technology >Probability-Relevant Incipient Fault Detection and Diagnosis Methodology With Applications to Electric Drive Systems
【24h】

Probability-Relevant Incipient Fault Detection and Diagnosis Methodology With Applications to Electric Drive Systems

机译:概率相关的早期故障检测与诊断方法及其在电力驱动系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

By dealing with the crowding problem caused by incipient faults, this brief will develop a new fault detection and diagnosis (FDD) scheme called probability-relevant principal component analysis from the probability view point. The proposed methodology cooperates with Kullback-Leibler divergence from the information field and Bayesian inference from the machine learning domain. Compared with the standard FDD methods under the framework of multivariate statistical analysis, this new FDD scheme is more sensitive to faults under an acceptable false alarm ratio, especially to incipient faults; moreover, it is more accurate in diagnosing faults with the aid of improved fault detectability. The effectiveness of the proposed FDD method is illustrated by mathematical analysis and geometric descriptions, and validated via a numerical example and a real experimental setup on the electric drive system of a high-speed train.
机译:通过解决由初期故障引起的拥挤问题,本简介将从概率角度出发开发一种新的故障检测和诊断(FDD)方案,称为概率相关主成分分析。所提出的方法与信息领域的Kullback-Leibler散度以及机器学习领域的贝叶斯推理相配合。与多元统计分析框架下的标准FDD方法相比,这种新的FDD方案对可接受的误报率下的故障更加敏感,特别是对于早期故障。此外,借助改进的故障检测能力,它可以更准确地诊断故障。通过数学分析和几何描述来说明所提出的FDD方法的有效性,并通过数值示例和实际实验对高速列车的电驱动系统进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号