首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Dynamic Probabilistic Latent Variable Model for Process Data Modeling and Regression Application
【24h】

Dynamic Probabilistic Latent Variable Model for Process Data Modeling and Regression Application

机译:动态概率潜在变量模型在过程数据建模与回归中的应用

获取原文
获取原文并翻译 | 示例

摘要

Dynamic and uncertainty are two main features of the industrial process data which should be paid attention when carrying out process data modeling and analytics. In this paper, the dynamical and uncertain data characteristics are both taken into consideration for the regression modeling purpose. Based on the probabilistic latent variable modeling framework, the linear dynamic system is introduced for incorporation of the dynamical data feature. The expectation–maximization Algorithm is introduced for parameter learning of the dynamical probabilistic latent variable model, based on which a new soft sensing scheme is then formulated for online prediction of key/quality variables in the process. An industrial case study illustrates the necessity and effectiveness of introducing the dynamical data information into the probabilistic latent variable model.
机译:动态和不确定性是工业过程数据的两个主要特征,在进行过程数据建模和分析时应注意。在本文中,动态和不确定数据特征都被考虑用于回归建模目的。在概率潜变量建模框架的基础上,引入了线性动态系统以结合动态数据特征。引入期望最大化算法对动态概率潜在变量模型进行参数学习,在此基础上,制定了一种新的软传感方案,用于在线预测过程中的关键/质量变量。工业案例研究说明了将动态数据信息引入概率潜在变量模型的必要性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号