首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Quantized Subgradient Algorithm and Data-Rate Analysis for Distributed Optimization
【24h】

Quantized Subgradient Algorithm and Data-Rate Analysis for Distributed Optimization

机译:分布式优化的量化次梯度算法和数据率分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider quantized distributed optimization problems with limited communication capacity and time-varying communication topology. A distributed quantized subgradient algorithm is presented with quantized information exchange between agents. Based on a proposed encoder-decoder scheme and a zooming-in technique, the optimal solution can be obtained without any quantization errors. Moreover, we explore how to minimize the quantization level number for quantized distributed optimization problems. In fact, the optimization problem can be solved with five-level quantizers in the switching topology case, while it can be solved with three-level quantizers in the fixed topology case.
机译:在本文中,我们考虑具有有限通信容量和时变通信拓扑的量化分布式优化问题。提出了一种分布式量化次梯度算法,该算法具有代理之间的量化信息交换。基于提出的编码器-解码器方案和放大技术,可以获得最佳解决方案,而没有任何量化误差。此外,我们探讨了如何针对量化的分布式优化问题最小化量化级别数。实际上,在交换拓扑情况下,可以用五级量化器解决优化问题,而在固定拓扑情况下,可以用三级量化器解决优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号