首页> 外文期刊>Neurocomputing >Quantized subgradient algorithm with limited bandwidth communications for solving distributed optimization over general directed multi-agent networks
【24h】

Quantized subgradient algorithm with limited bandwidth communications for solving distributed optimization over general directed multi-agent networks

机译:有限带宽通信的量化次梯度算法,用于解决通用有向多主体网络上的分布式优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the quantized distributed optimization problem over general directed digital multi-agent networks, where the communication channels have limited data transmission rates. To solve the optimization problem, a distributed quantized subgradient algorithm is presented among agents. Based on an encoder-decoder scheme and a zoom-in technique, we can achieve not only a consensus, but also an optimal solution. In particular, we study two cases of the quantization levels of each connected directed digital communication channel. One is under the case that the quantization levels are time-varying at each time step, and the other is under the case of fixed quantization level. Two rigorous theoretical analyses are performed and the optimal solutions can be obtained asymptotically. Moreover, the upper bound of the quantization levels at each time step and the convergence rate are analytically characterized. The effectiveness of proposed algorithm is demonstrated by two illustrative examples. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了通用定向数字多主体网络上的量化分布优化问题,其中通信通道的数据传输速率有限。为了解决该优化问题,提出了一种在代理之间的分布式量化次梯度算法。基于编码器-解码器方案和放大技术,我们不仅可以达成共识,而且可以获得最佳解决方案。尤其是,我们研究了每个连接的定向数字通信信道的量化级别的两种情况。一种情况是量化水平在每个时间步都是时变的,另一种情况是固定水平的量化。进行了两次严格的理论分析,并且可以渐近获得最优解。而且,分析地表征了每个时间步的量化水平的上限和收敛速度。通过两个示例说明了所提出算法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号