首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Constraint-Preconditioned Inexact Newton Method for Hydraulic Simulation of Large-Scale Water Distribution Networks
【24h】

Constraint-Preconditioned Inexact Newton Method for Hydraulic Simulation of Large-Scale Water Distribution Networks

机译:约束预条件不精确牛顿法在大型供水管网水力模拟中的应用

获取原文
获取原文并翻译 | 示例

摘要

Many sequential mathematical optimization methods and simulation-based heuristics for optimal control and design of water distribution networks rely on a large number of hydraulic simulations. In this paper, we propose an efficient inexact subspace Newton method for hydraulic analysis of water distribution networks. By using sparse and well-conditioned fundamental null space bases, we solve the nonlinear system of hydraulic equations in a lower-dimensional kernel space of the network incidence matrix. In the inexact framework, the Newton steps are determined by solving the Newton equations only approximately using an iterative linear solver. Since large water network models are inherently badly scaled, Jacobian regularization is employed to improve the condition number of these linear systems and guarantee positive definiteness. After presenting a convergence analysis of the regularized inexact Newton method, we use the conjugate-gradient (CG) method to solve the sparse reduced Newton linear systems. Since CG is not effective without good preconditioners, we propose tailored constraint preconditioners that are computationally cheap because they are based only on invariant properties of the null-space linear systems and do not change with flows and pressures. The preconditioners are shown to improve the distribution of eigenvalues of the linear systems and so enable a more efficient use of the CG solver. Since contiguous Newton iterates can have similar solutions, each CG call is warm-started with the solution for a previous Newton iterate to accelerate its convergence rate. Operational network models are used to show the efficacy of the proposed preconditioners and the warm-starting strategy in reducing computational effort.
机译:许多连续的数学优化方法和基于仿真的启发式方法,用于水分配网络的最佳控制和设计,都依赖于大量的液压仿真。在本文中,我们提出了一种有效的不精确子空间牛顿法,用于水分配网络的水力分析。通过使用稀疏且条件良好的基本零空间基数,我们在网络入射矩阵的低维内核空间中求解了水力方程的非线性系统。在不精确的框架中,牛顿步骤是通过仅使用迭代线性求解器近似求解牛顿方程来确定的。由于大型水网络模型固有地缩放不佳,因此采用雅可比正则化方法来改善这些线性系统的条件数并确保正定性。在提出正规化不精确牛顿法的收敛性分析之后,我们使用共轭梯度法(CG)来求解稀疏的简化牛顿线性系统。由于没有良好的预处理器,CG无效,因此我们提出了量身定制的约束预处理器,因为它们仅基于零空间线性系统的不变性质,并且不会随流量和压力而变化,因此它们在计算上便宜。所示的预处理器可以改善线性系统特征值的分布,因此可以更有效地使用CG解算器。由于连续的Newton迭代可以具有类似的解决方案,因此每个CG调用都使用先前的Newton迭代的解决方案进行热启动,以加快收敛速度​​。运营网络模型用于显示所提出的预处理器和热启动策略在减少计算量方面的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号