首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Distributionally Robust Chance-Constrained Optimal Power Flow Assuming Unimodal Distributions With Misspecified Modes
【24h】

Distributionally Robust Chance-Constrained Optimal Power Flow Assuming Unimodal Distributions With Misspecified Modes

机译:假设模式不正确的单峰分布,分布受机会约束的鲁棒机会约束最优潮流

获取原文
获取原文并翻译 | 示例

摘要

Chance-constrained optimal power flow (CC-OPF) formulations have been proposed to minimize operational costs, while controlling the risk arising from uncertainties like renewable generation and load consumption. To solve CC-OPF, we often need access to the (true) joint probability distribution of all uncertainties, which is rarely known in practice. A solution based on a biased estimate of the distribution can result in poor reliability. To overcome this challenge, recent work has explored distributionally robust chance constraints, in which the chance constraints are satisfied over a family of distributions called the ambiguity set. Commonly, ambiguity sets are only based on moment information (e.g., mean and covariance) of the random variables; however, specifying additional characteristics of the random variables reduces conservatism and cost. Here, we consider ambiguity sets that additionally incorporate unimodality information. In practice, it is difficult to estimate the mode location from the data and so we allow it to be potentially misspecified. We formulate the problem and derive a separation-based algorithm to efficiently solve it. Finally, we evaluate the performance of the proposed approach on a modified IEEE-30 bus network with wind uncertainty and compare it with other distributionally robust approaches. We find that a misspecified mode significantly affects the reliability of the solution, and the proposed model demonstrates a good tradeoff between cost and reliability.
机译:已经提出了机会约束的最佳潮流(CC-OPF)公式,以最大程度地降低运营成本,同时控制诸如可再生能源发电和负荷消耗等不确定性带来的风险。为了解决CC-OPF,我们经常需要获得所有不确定性的(真实)联合概率分布,这在实践中鲜为人知。基于偏差的分布估计值的解决方案可能会导致可靠性下降。为了克服这一挑战,最近的工作探索了分布稳健的机会约束,其中机会约束在称为歧义集的分布族中得到满足。通常,歧义集仅基于随机变量的矩信息(例如均值和协方差);但是,指定随机变量的其他特征会降低保守性和成本。在这里,我们考虑了另外包含单峰信息的歧义集。实际上,很难从数据中估计模式位置,因此我们允许对其进行潜在错误指定。我们提出问题并推导基于分离的算法来有效地解决它。最后,我们评估了该方法在带有风不确定性的改进型IEEE-30总线网络上的性能,并将其与其他分布式鲁棒方法进行了比较。我们发现错误指定的模式会严重影响解决方案的可靠性,并且所提出的模型证明了成本与可靠性之间的良好折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号