首页> 外文期刊>Control Engineering Practice >Sensor fault diagnosis in a chemical process via RBF neural networks
【24h】

Sensor fault diagnosis in a chemical process via RBF neural networks

机译:通过RBF神经网络进行化学过程中的传感器故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function (RBF) neural networks are investigated here for process fault diagnosis. The sue of the output prediction error, between a neural network model and a non-linear dynamic process, as a residual for diagnosing actuator, component and sensor faults is analysed. It is found that this residual for a dependent neural model is less sensitive to sensor faults than actuator or component faults. This is confirmed in experiments for a real, multivariable chemical reactor. A scheme is then developed utilising a semi-independent neural odel to generate enhanced residuals for diagnosing the sensor faults in the reactor. A second neural-network classifier is developed to diagnose the sensor faults from he residuals generated, a nd results are presented to demonstrate the satisfactory detection and isolation of sensor faults achieved using this approach.
机译:本文研究了径向基函数(RBF)神经网络,用于过程故障诊断。分析了在神经网络模型和非线性动态过程之间的输出预测误差,作为诊断执行器,组件和传感器故障的残差。已经发现,相关神经模型的此残差对传感器故障的敏感度小于对执行器或组件故障的敏感度。在一个真实的多变量化学反应器的实验中证实了这一点。然后,开发了一种利用半独立神经odel生成增强残差的方案,以诊断反应堆中的传感器故障。开发了第二个神经网络分类器,以从产生的残差诊断传感器故障,并提供结果和结果,以证明使用此方法可以令人满意地检测和隔离传感器故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号