首页> 外文期刊>Control Engineering Practice >Data-driven robust model predictive control framework for stem water potential regulation and irrigation in water management
【24h】

Data-driven robust model predictive control framework for stem water potential regulation and irrigation in water management

机译:用于水管理干水势调节和灌溉的数据驱动鲁棒模型预测控制框架

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a data-driven robust model predictive control (DDRMPC) framework that utilizes stem water potential (SWP) as a basis for effective irrigation control of high value-added crops. By linearizing and discretizing a nonlinear dynamic model of water dynamics, we develop a state-space model that predicts the dynamic state of SWP. In the model, soil, root, and stem are the three compartments to describe current water status of the system. In addition, evapotranspiration and precipitation are the driving force and the water inlet, respectively. A robust optimal control problem is formulated to maintain SWP above a safe level to avoid detrimental effects on crops. To describe the uncertainty within prediction errors of evapotranspiration and precipitation, a data-driven approach is adopted, which achieves a desirable tradeoff between constraint satisfaction and water saving. Meanwhile, it is shown that the proposed DDRMPC ensures both feasibility and stability. A case study based on almond tree is carried out to showcase the effectiveness of the DDRMPC strategy relative to on-off control, certainty equivalent MPC and robust MPC. In particular, the control of tree stem water potential through DDRMPC can reduce the water consumption by 7.9% compared with on-off control while maintaining zero probability of constraint violation.
机译:在这项工作中,我们提出了一种数据驱动的鲁棒模型预测控制(DDRMPC)框架,其利用茎水电位(SWP)作为高附加值作物的有效灌溉控制的基础。通过线性化和离散的水动态模型,我们开发了一种预测SWP动态状态的状态空间模型。在模型,土壤,根和茎中是描述系统当前水状态的三个隔间。另外,蒸发和沉淀分别是驱动力和进水口。制定了稳健的最佳控制问题,以维持SWP在安全水平上方,以避免对作物的不利影响。为了描述蒸发蒸腾和降水的预测误差内的不确定性,采用了一种数据驱动方法,这在约束满足和节水之间实现了所需的权衡。同时,表明所提出的DDRMPC确保了可行性和稳定性。基于杏仁树的案例研究进行了展示DDRMPC策略相对于开关控制,确定性等效MPC和强大的MPC的有效性。特别是,通过DDRMPC对树木杆水电位的控制可以将水消耗降低7.9%,而与开关控制相比保持零限制违规的概率。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第8期|104841.1-104841.13|共13页
  • 作者单位

    Smith School of Chemical and Biomoleadar Engineering Cornell University Ithaca NY 14853 USA;

    Department of Automation BNRist Tsinghua University Beijing 100084 China;

    Smith School of Chemical and Biomoleadar Engineering Cornell University Ithaca NY 14853 USA;

    Smith School of Chemical and Biomoleadar Engineering Cornell University Ithaca NY 14853 USA;

    FloraPulse Co at 170 Louise In Davis CA 95618 USA;

    Smith School of Chemical and Biomoleadar Engineering Cornell University Ithaca NY 14853 USA;

    Smith School of Chemical and Biomoleadar Engineering Cornell University Ithaca NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Irrigation control; Data-driven robust optimization; Robust model predictive control uncertainty;

    机译:灌溉控制;数据驱动的鲁棒优化;强大的模型预测控制不确定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号