首页> 外文期刊>Control Engineering Practice >Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis
【24h】

Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis

机译:基于内核规范相关分析的关键性能指示符相关状态监测

获取原文
获取原文并翻译 | 示例

摘要

As a multivariate statistical analysis method, canonical correlation analysis (CCA) performs well for state monitoring of linear processes, but most industrial processes are nonlinear. To solve this problem, kernel canonical correlation analysis (KCCA) has been adopted; however, KCCA still has key performance indicators (KPI)-related issue. In this paper, two improved KCCA methods are proposed to deal with KPI-related issue. One is performing singular value decomposition (SVD) on the correlation coefficient matrix, then the kernel matrix can be divided into KPI-related and KPI-unrelated parts. Another one is performing general singular value decomposition (GSVD) on two coefficient matrices. In addition, this paper also performs fault detectability analysis and computational complexity analysis on these two methods. Finally, the Tennessee Eastman (TE) process is used in this study to verify the efficacy of these two proposed methods.
机译:作为多变量统计分析方法,规范相关性分析(CCA)对线性过程的状态监测表现良好,但大多数工业过程是非线性的。为了解决这个问题,已经采用了内核规范相关分析(KCCA);但是,KCCA仍然有关键的绩效指标(KPI) - 相关问题。在本文中,提出了两种改进的KCCA方法来处理KPI相关的问题。一个是在相关系数矩阵上执行奇异值分解(SVD),然后核矩阵可以分为与KPI相关和KPI - 不相关的部分。另一个是在两个系数矩阵上执行通用奇异值分解(GSVD)。此外,本文还对这两种方法进行了故障可检测性分析和计算复杂性分析。最后,在本研究中使用了田纳西州伊斯特曼(TE)过程,以验证这两个提出方法的功效。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第2期|104692.1-104692.12|共12页
  • 作者

    Qing Chen; Youqing Wang;

  • 作者单位

    College of Information Science and Technology Beijing University of Chemical Technology Beijing 100029 China;

    College of Information Science and Technology Beijing University of Chemical Technology Beijing 100029 China College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao 266590 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kernel canonical correlation analysis; Key performance indicator; State monitoring; Fault detection;

    机译:内核规范相关分析;关键绩效指标;国家监测;故障检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号