首页> 外文期刊>Control Engineering Practice >Multi-model ensemble prediction model for carbon efficiency with application to iron ore sintering process
【24h】

Multi-model ensemble prediction model for carbon efficiency with application to iron ore sintering process

机译:用于铁矿烧结过程的碳效率的多模型集合预测模型

获取原文
获取原文并翻译 | 示例

摘要

Iron ore sintering is one of the most energy-consuming process in steel industry. Accurate prediction of carbon efficiency for this process is beneficial to energy savings and consumption reduction. Considering the sintering process exhibits strong nonlinearities, multiple parameters, multiple operating conditions, etc., a multi-model ensemble prediction model based on the actual run data is developed to achieve the high-precision prediction of carbon efficiency. It takes the comprehensive coke ratio (CCR) as a metric (index) of carbon efficiency in the sintering process. First, an affinity propagation clustering algorithm is used to realize the automatic identification of multiple operating conditions. Then, different models are established under different operating conditions by using the proposed least squares support vector machine (LS-SVM) with hybrid kernel modeling method. Finally, a partial least-squares regression method is employed as an ensemble strategy to combine the different models to form the multi-model ensemble prediction model for the CCR. The simulation results involving the actual run data demonstrate that the proposed model can predict the CCR accurately when compared with other prediction methods. The results of actual runs show that the coefficient of determination for the proposed model is 0.877. The proposed model satisfies the requirements of actual sintering process and enables the real-time prediction.
机译:铁矿石烧结是钢铁工业中最具耗能的过程之一。对该过程的碳效率准确预测有利于节能和消费减少。考虑到烧结过程表现出强烈的非线性,多个参数,多个操作条件等,开发了一种基于实际运行数据的多模型集合预测模型,以实现碳效率的高精度预测。它将综合焦炭比(CCR)作为烧结过程中碳效率的公制(指数)。首先,使用关联传播聚类算法来实现多个操作条件的自动识别。然后,通过使用具有混合内核建模方法的所提出的最小二乘支持向量机(LS-SVM)在不同的操作条件下建立不同的模型。最后,使用部分最小二乘来回归方法作为组合不同模型来形成CCR的多模型集合预测模型的集合策略。涉及实际运行数据的仿真结果表明,与其他预测方法相比,所提出的模型可以准确地预测CCR。实际运行的结果表明,所提出的模型的确定系数为0.877。该建议的模型满足实际烧结过程的要求,并实现了实时预测。

著录项

  • 来源
    《Control Engineering Practice》 |2019年第7期|141-151|共11页
  • 作者单位

    China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;

    China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;

    China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;

    China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;

    Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iron ore sintering process; Carbon efficiency; LS-SVM with hybrid kernel; Partial least-squares regression; Multi-model ensemble prediction;

    机译:铁矿石烧结工艺;碳效率;LS-SVM与杂交内核;部分最小二乘回归;多模型集合预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号