机译:用于铁矿烧结过程的碳效率的多模型集合预测模型
China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;
China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;
China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;
China Univ Geosci Sch Automat Wuhan 430074 Hubei Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Hubei Peoples R China;
Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;
Iron ore sintering process; Carbon efficiency; LS-SVM with hybrid kernel; Partial least-squares regression; Multi-model ensemble prediction;
机译:碳效率的多模型集成预测模型在铁矿石烧结过程中的应用
机译:基于递归神经网络和双接头线性-非线性极限学习网络的混合时间序列预测模型,用于铁矿石烧结过程的碳效率预测
机译:用于预测铁矿石烧结过程中碳效率的半监控线性非线性最小二乘学习网络
机译:铁矿石烧结过程中碳效率的建模方法
机译:用于季节气候预测的多模型集合分析。
机译:基于ELM和改进AdaBoost.RT算法的混合集成模型预测铁矿石烧结性能。
机译:基于替代气态燃料的铁矿石烧结过程中PCDD和PCDF排放的模型预测
机译:铁矿烧结过程中强度指数的自调整多步预测