首页> 外文期刊>Control Engineering Practice >Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation
【24h】

Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation

机译:结合基于模型的诊断和数据驱动的异常分类器以进行故障隔离

获取原文
获取原文并翻译 | 示例

摘要

Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training data. This paper proposes a hybrid diagnosis system design which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify unknown faults and also classify multiple-faults using only single-fault training data. The proposed method is verified using a physical model and data collected from an internal combustion engine.
机译:机器学习可用于自动处理传感器数据并创建数据驱动的模型进行预测和分类。然而,在诸如故障诊断的应用中,故障是罕见的事件,并且由于缺乏相关的训练数据,用于故障分类的学习模型也很复杂。本文提出了一种混合诊断系统设计,该设计将基于模型的残差与增量异常分类器结合在一起。所提出的方法能够识别未知故障,并且仅使用单故障训练数据就可以对多故障进行分类。使用物理模型和从内燃机收集的数据验证了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号