首页> 外文期刊>Control Engineering Practice >Stochastic Model Reference Predictive Temperature Control With Integral Action For An Industrial Oil-cooling Process
【24h】

Stochastic Model Reference Predictive Temperature Control With Integral Action For An Industrial Oil-cooling Process

机译:工业油冷却过程中具有积分作用的随机模型参考预测温度控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a stochastic model reference predictive control (SMRPC) approach to achieving accurate temperature control for an industrial oil-cooling process, which is experimentally modeled as a simple first-order system model with given long time delay. Based on this model, the stochastic model reference predictive controller with control weighting and integral action is derived based on the minimization of an expected generalized predictive control (GPC) performance criteria. A real-time adaptive SMRPC algorithm is proposed and then implemented into a stand-alone digital signal processor (DSP). Experimental results show that the proposed control method is capable of giving accurate and satisfactory control performance under set-point changes, fixed load and load changes.
机译:本文提出了一种用于工业油冷却过程中实现精确温度控制的随机模型参考预测控制(SMRPC)方法,该方法通过实验建模为具有给定长时间延迟的简单一阶系统模型。基于此模型,基于预期的广义预测控制(GPC)性能标准的最小化,得出具有控制权重和积分作用的随机模型参考预测控制器。提出了一种实时自适应SMRPC算法,然后将其实现为独立的数字信号处理器(DSP)。实验结果表明,所提出的控制方法能够在设定点变化,固定载荷和载荷变化下给出准确而令人满意的控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号