首页> 外文期刊>Control Engineering Practice >Automatic oscillation detection and characterization in closed-loop systems
【24h】

Automatic oscillation detection and characterization in closed-loop systems

机译:闭环系统中的自动振荡检测和表征

获取原文
获取原文并翻译 | 示例

摘要

It is well known that oscillations are a major cause for inferior product quality and productivity losses. Understanding the nature and the phenomena that underlie the oscillations is the first step in mitigating their effect on plant performance. Industrial reality is that multiple oscillations are generally present in the data due to several underlying sources. Detection of oscillations and identification of their time periods are difficult due to the presence of noise in data that might lead to spurious peaks in the power spectrum of the process output. This problem of oscillation detection has received much attention in the literature in recent years. In this paper, an oscillation detection approach that is based on processing of the intrinsic modes that are identified by the sieving process of Empirical Mode Decomposition (EMD) is proposed. The advantages of the proposed method are: (i) ability to detect the presence of single/multiple oscillations and identify their time periods, (ii) ability to provide the amplitude of oscillations, (iii) robustness to noise, (iv) capability to handle nonstationary trends and, (v) ability to provide information about dominant and weak oscillatory modes in the process data. Simulation studies demonstrate the robustness of the proposed approach to noise and its ability to characterize multiple oscillations in the process output. Results obtained from this approach on various industrial case studies are promising and seem to indicate that the proposed technique can be readily implemented in industrial environment.
机译:众所周知,振荡是导致劣质产品质量和生产率损失的主要原因。了解振荡的本质和现象是减轻其对工厂性能的影响的第一步。工业上的现实是,由于几个潜在的来源,数据中通常会出现多次振荡。由于数据中存在噪声,因此可能难以检测到振荡并确定其时间段,这可能会导致过程输出的功率谱出现虚假峰值。近年来,这种振荡检测问题已在文献中引起很多关注。本文提出了一种基于对固有模式进行处理的振动检测方法,该固有模式通过经验模态分解(EMD)的筛选过程确定。所提出的方法的优点是:(i)能够检测单次/多次振荡并确定其时间周期;(ii)提供振荡幅度的能力;(iii)噪声的鲁棒性;(iv)处理非平稳趋势,以及(v)在过程数据中提供有关主导和弱振荡模式的信息的能力。仿真研究证明了所提出的噪声处理方法的鲁棒性及其表征过程输出中多次振荡的能力。这种方法在各种工业案例研究中获得的结果是有希望的,并且似乎表明所提出的技术可以很容易地在工业环境中实施。

著录项

  • 来源
    《Control Engineering Practice》 |2012年第8期|p.733-746|共14页
  • 作者

    B. Srinivasan; R. Rengaswamy;

  • 作者单位

    Department of Chemical engineering, Texas Tech University, Lubbock, Texas, United States of America;

    Department of Chemical engineering, Texas Tech University, Lubbock, Texas, United States of America;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    oscillation detection; correlation; EMD;

    机译:振荡检测;相关性EMD;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号