首页> 外文期刊>Control Engineering Practice >Intelligent coordinated controller design for a 600 MW supercritical boiler unit based on expanded-structure neural network inverse models
【24h】

Intelligent coordinated controller design for a 600 MW supercritical boiler unit based on expanded-structure neural network inverse models

机译:基于扩展结构神经网络逆模型的600 MW超临界锅炉机组智能协调控制器设计

获取原文
获取原文并翻译 | 示例

摘要

Under present widespread automatic generation control (AGC) centered on regional power grid, a large-capacity coal-fired supercritical (SC) power unit often operates under wide-range variable load conditions. Since a SC once-through boiler unit is represented by a typical multivariable system with large inertia and non-linear, slow time-variant and time-delay characteristics, it often makes the coordinated control quality deteriorate under wide-range loading conditions, and thus influences the unit load response speed and leads to heavy fluctuation of the main steam pressure. To improve the SC unit's coordinated control quality with advanced intelligent control strategy, the neural-network (NN) based expanded-structure inverse system models of a 600 MW SC boiler unit were investigated. A feedforward neural network with time-delayed inputs and time-delayed output feedbacks was adopted to establish the inverse models for the load and the main steam pressure characteristics. Based on the model, a neural network inverse coordinated control scheme was designed and tested in a full-scope power plant simulator of the given SC power unit, which showed that the proposed coordinated control scheme can achieve better control results compared to the original PID coordinated control.
机译:在当前以区域电网为中心的广泛的自动发电控制(AGC)下,大容量的燃煤超临界(SC)动力装置通常在宽范围的可变负载条件下运行。由于SC直流锅炉机组是由惯性大,非线性,时变和时滞特性慢的典型多变量系统代表的,因此在大范围负载条件下,通常会使协调控制质量变差,因此影响单位负载响应速度并导致主蒸汽压力剧烈波动。为了利用先进的智能控制策略提高SC机组的协调控制质量,研究了基于神经网络的600 MW SC锅炉机组扩展结构逆系统模型。采用具有时滞输入和时滞输出反馈的前馈神经网络来建立负载和主要蒸汽压力特性的逆模型。基于该模型,设计了神经网络逆协调控制方案,并在给定SC功率单元的全范围电厂模拟器中进行了测试,结果表明,与原始PID协调相比,所提出的协调控制方案可以获得更好的控制效果。控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号