首页> 外文期刊>Consumer Electronics, IEEE Transactions on >Illumination-robust face recognition system based on differential components
【24h】

Illumination-robust face recognition system based on differential components

机译:基于差分分量的鲁棒性人脸识别系统

获取原文
获取原文并翻译 | 示例

摘要

Illumination variation generally causes performance degradation of face recognition systems under real-life environments. Therefore, we propose an illuminationrobust face recognition system using a fusion approach based on efficient facial feature called differential two-dimensional principal component analysis (D2D-PCA) for consumer applications. In the proposed method, face images are divided into two sub-images to minimize illumination effects, and D2D-PCA is separately applied to each sub-images. The individual matching scores obtained from two sub-images are then integrated using a weighted-summation operation, and the fused-score is utilized to classify the unknown user. Performance evaluation of the proposed system was performed using an extended Yale face database B which consists of 2,414 face images for 38 subjects representing 64 illumination conditions under the frontal pose. Experimental results show that the proposed fusion approach enhanced recognition accuracy by 22.02% compared to that of 2DPCA, and we confirmed the effectiveness of the proposed face recognition system under illumination-variant environments
机译:照明变化通常会导致现实生活环境下人脸识别系统的性能下降。因此,我们提出了一种基于照明的鲁棒性面部识别系统,该系统基于一种融合的方法,该方法基于有效的面部特征(称为差分二维主成分分析(D2D-PCA)),用于消费类应用。在所提出的方法中,面部图像被分成两个子图像以最小化照明效果,并且D2D-PCA被分别应用于每个子图像。然后,使用加权求和操作对从两个子图像获得的单个匹配分数进行积分,并使用融合分数对未知用户进行分类。使用扩展的耶鲁人脸数据库B对所提出系统的性能进行评估,该数据库由用于表示正面姿势下64个照明条件的38个对象的2,414张人脸图像组成。实验结果表明,与2DPCA相比,该融合方法将识别准确率提高了22.02%,并且我们证实了该提议的面部识别系统在光照变化的环境下的有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号