首页> 外文期刊>Consumer Electronics, IEEE Transactions on >Efficient implementation of an SVM-based speech/music classifier by enhancing temporal locality in support vector references
【24h】

Efficient implementation of an SVM-based speech/music classifier by enhancing temporal locality in support vector references

机译:通过增强支持向量参考中的时间局部性,有效实现基于SVM的语音/音乐分类器

获取原文
获取原文并翻译 | 示例

摘要

Speech/music classification is an integral part of various consumer electronics applications such as audio codecs, multimedia document indexing, and automatic speech recognition. To achieve high performance at speech/music classification, a support vector machine (SVM) has been widely used as a classifier due to its decent classification capability. However, in order to use an SVM-based speech/music classifier in embedded systems, which gradually replace desktop computer systems, one significant implementation problem needs to be resolved: high implementation cost due to time and energy inefficiency. The memory requirement determined by the dimensionality and the number of support vectors, is generally too high for an embedded systems cache to accommodate resulting in expensive memory accesses. In this paper, two techniques are proposed to reduce expensive memory accesses by enhancing temporal locality in support vector references utilizing fetched data from memory with great efficiency. For this, the patterns in support vector references are first analyzed, and then loop transformation techniques are proposed to improve the temporal locality that register file and cache hierarchy take advantage of. The proposed techniques are evaluated by applying them to a speech codec, and the enhancement is confirmed by measuring the number of memory accesses, overall execution time, and energy consumption.
机译:语音/音乐分类是各种消费电子应用程序(如音频编解码器,多媒体文档索引和自动语音识别)的组成部分。为了在语音/音乐分类中实现高性能,支持向量机(SVM)由于具有不错的分类能力而被广泛用作分类器。但是,为了在逐渐取代台式计算机系统的嵌入式系统中使用基于SVM的语音/音乐分类器,需要解决一个重要的实现问题:由于时间和能源效率低下,实现成本较高。由支持向量的维数和数量确定的内存需求通常对于嵌入式系统缓存而言太高,无法容纳导致昂贵的内存访问。在本文中,提出了两种技术,可通过利用从内存中高效地获取的数据来增强支持向量参考中的时间局部性来减少昂贵的内存访问。为此,首先分析支持向量参考中的模式,然后提出循环变换技术以提高寄存器文件和缓存层次结构利用的时间局部性。通过将所提出的技术应用于语音编解码器来对其进行评估,并通过测量内存访问次数,总体执行时间和能耗来确认这种增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号